Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme38m Unicode version

Theorem cdleme38m 30721
Description: Part of proof of Lemma E in [Crawley] p. 113. Show that f(x) is one-to-one on  P  .\/  Q line. TODO: FIX COMMENT (Contributed by NM, 13-Mar-2013.)
Hypotheses
Ref Expression
cdleme38.l  |-  .<_  =  ( le `  K )
cdleme38.j  |-  .\/  =  ( join `  K )
cdleme38.m  |-  ./\  =  ( meet `  K )
cdleme38.a  |-  A  =  ( Atoms `  K )
cdleme38.h  |-  H  =  ( LHyp `  K
)
cdleme38.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme38.e  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme38.d  |-  D  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) )
cdleme38.v  |-  V  =  ( ( t  .\/  E )  ./\  W )
cdleme38.x  |-  X  =  ( ( u  .\/  D )  ./\  W )
cdleme38.f  |-  F  =  ( ( R  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
) )
cdleme38.g  |-  G  =  ( ( S  .\/  X )  ./\  ( D  .\/  ( ( u  .\/  S )  ./\  W )
) )
Assertion
Ref Expression
cdleme38m  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  R  =  S )

Proof of Theorem cdleme38m
StepHypRef Expression
1 simp1 955 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simp2 956 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )
3 simp311 1102 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  R  .<_  ( P  .\/  Q ) )
4 simp312 1103 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  S  .<_  ( P  .\/  Q ) )
5 simp313 1104 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  F  =  G )
63, 4jca 518 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( R  .<_  ( P 
.\/  Q )  /\  S  .<_  ( P  .\/  Q ) ) )
7 simp32 992 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) )
8 simp33 993 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) )
9 cdleme38.l . . . . . 6  |-  .<_  =  ( le `  K )
10 cdleme38.j . . . . . 6  |-  .\/  =  ( join `  K )
11 cdleme38.m . . . . . 6  |-  ./\  =  ( meet `  K )
12 cdleme38.a . . . . . 6  |-  A  =  ( Atoms `  K )
13 cdleme38.h . . . . . 6  |-  H  =  ( LHyp `  K
)
14 cdleme38.u . . . . . 6  |-  U  =  ( ( P  .\/  Q )  ./\  W )
15 cdleme38.e . . . . . 6  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
16 cdleme38.d . . . . . 6  |-  D  =  ( ( u  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  u )  ./\  W
) ) )
17 cdleme38.v . . . . . 6  |-  V  =  ( ( t  .\/  E )  ./\  W )
18 cdleme38.x . . . . . 6  |-  X  =  ( ( u  .\/  D )  ./\  W )
19 eqid 2358 . . . . . 6  |-  ( ( S  .\/  V ) 
./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
) )  =  ( ( S  .\/  V
)  ./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
) )
20 cdleme38.g . . . . . 6  |-  G  =  ( ( S  .\/  X )  ./\  ( D  .\/  ( ( u  .\/  S )  ./\  W )
) )
219, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20cdleme37m 30720 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q ) )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P 
.\/  Q ) )  /\  ( ( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P 
.\/  Q ) ) ) )  ->  (
( S  .\/  V
)  ./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
) )  =  G )
221, 2, 6, 7, 8, 21syl113anc 1194 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( ( S  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
) )  =  G )
235, 22eqtr4d 2393 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  F  =  ( ( S  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  S ) 
./\  W ) ) ) )
243, 4, 233jca 1132 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  -> 
( R  .<_  ( P 
.\/  Q )  /\  S  .<_  ( P  .\/  Q )  /\  F  =  ( ( S  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  S )  ./\  W )
) ) ) )
25 eqid 2358 . . 3  |-  ( Base `  K )  =  (
Base `  K )
26 cdleme38.f . . 3  |-  F  =  ( ( R  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  R )  ./\  W )
) )
2725, 9, 10, 11, 12, 13, 14, 15, 17, 26, 19cdleme36m 30719 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  ( ( S  .\/  V )  ./\  ( E  .\/  ( ( t  .\/  S ) 
./\  W ) ) ) )  /\  (
( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) ) ) )  ->  R  =  S )
281, 2, 24, 7, 27syl112anc 1186 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( ( R  .<_  ( P  .\/  Q )  /\  S  .<_  ( P 
.\/  Q )  /\  F  =  G )  /\  ( ( t  e.  A  /\  -.  t  .<_  W )  /\  -.  t  .<_  ( P  .\/  Q ) )  /\  (
( u  e.  A  /\  -.  u  .<_  W )  /\  -.  u  .<_  ( P  .\/  Q ) ) ) )  ->  R  =  S )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4104   ` cfv 5337  (class class class)co 5945   Basecbs 13245   lecple 13312   joincjn 14177   meetcmee 14178   Atomscatm 29522   HLchlt 29609   LHypclh 30242
This theorem is referenced by:  cdleme38n  30722
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-undef 6385  df-riota 6391  df-poset 14179  df-plt 14191  df-lub 14207  df-glb 14208  df-join 14209  df-meet 14210  df-p0 14244  df-p1 14245  df-lat 14251  df-clat 14313  df-oposet 29435  df-ol 29437  df-oml 29438  df-covers 29525  df-ats 29526  df-atl 29557  df-cvlat 29581  df-hlat 29610  df-llines 29756  df-lplanes 29757  df-lvols 29758  df-lines 29759  df-psubsp 29761  df-pmap 29762  df-padd 30054  df-lhyp 30246
  Copyright terms: Public domain W3C validator