Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme41sn3a Unicode version

Theorem cdleme41sn3a 30919
Description: Show that  [_ R  /  s ]_ N is under  P 
.\/  Q when  R  .<_  ( P 
.\/  Q ). (Contributed by NM, 19-Mar-2013.)
Hypotheses
Ref Expression
cdleme32.b  |-  B  =  ( Base `  K
)
cdleme32.l  |-  .<_  =  ( le `  K )
cdleme32.j  |-  .\/  =  ( join `  K )
cdleme32.m  |-  ./\  =  ( meet `  K )
cdleme32.a  |-  A  =  ( Atoms `  K )
cdleme32.h  |-  H  =  ( LHyp `  K
)
cdleme32.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme32.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme32.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme32.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme32.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
cdleme32.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
cdleme32a1.y  |-  Y  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )
cdleme32a1.z  |-  Z  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
Assertion
Ref Expression
cdleme41sn3a  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  / 
s ]_ N  .<_  ( P 
.\/  Q ) )
Distinct variable groups:    t, s,
y, A    B, s,
t, y    y, C    D, s, y    y, E    H, s, t    .\/ , s,
t, y    K, s,
t    .<_ , s, t, y    ./\ , s, t, y    P, s, t, y    Q, s, t, y    U, s, t, y    W, s, t, y    R, s, t, y    y, H   
y, K    y, Y
Allowed substitution hints:    C( t, s)    D( t)    E( t, s)    I( y, t, s)    N( y, t, s)    Y( t, s)    Z( y, t, s)

Proof of Theorem cdleme41sn3a
StepHypRef Expression
1 simp2rl 1026 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  R  e.  A )
2 simp3 959 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  R  .<_  ( P  .\/  Q ) )
3 cdleme32.e . . . 4  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
4 cdleme32.i . . . 4  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
5 cdleme32.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
6 cdleme32a1.y . . . 4  |-  Y  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( R  .\/  t )  ./\  W
) ) )
7 cdleme32a1.z . . . 4  |-  Z  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
83, 4, 5, 6, 7cdleme31sn1c 30874 . . 3  |-  ( ( R  e.  A  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  /  s ]_ N  =  Z )
91, 2, 8syl2anc 643 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  / 
s ]_ N  =  Z )
10 cdleme32.b . . . 4  |-  B  =  ( Base `  K
)
11 fvex 5705 . . . 4  |-  ( Base `  K )  e.  _V
1210, 11eqeltri 2478 . . 3  |-  B  e. 
_V
13 nfv 1626 . . . 4  |-  F/ t ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )
14 nfra1 2720 . . . . . . . 8  |-  F/ t A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y )
15 nfcv 2544 . . . . . . . 8  |-  F/_ t B
1614, 15nfriota 6522 . . . . . . 7  |-  F/_ t
( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) )
177, 16nfcxfr 2541 . . . . . 6  |-  F/_ t Z
18 nfcv 2544 . . . . . 6  |-  F/_ t  .<_
19 nfcv 2544 . . . . . 6  |-  F/_ t
( P  .\/  Q
)
2017, 18, 19nfbr 4220 . . . . 5  |-  F/ t  Z  .<_  ( P  .\/  Q )
2120a1i 11 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  F/ t  Z  .<_  ( P  .\/  Q ) )
227a1i 11 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  Z  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  Y ) ) )
23 breq1 4179 . . . . 5  |-  ( Y  =  Z  ->  ( Y  .<_  ( P  .\/  Q )  <->  Z  .<_  ( P 
.\/  Q ) ) )
2423adantl 453 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  Y  =  Z )  ->  ( Y  .<_  ( P  .\/  Q )  <->  Z  .<_  ( P 
.\/  Q ) ) )
25 simpl11 1032 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
26 simp12l 1070 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  P  e.  A )
2726adantr 452 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  P  e.  A )
28 simp13l 1072 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  Q  e.  A )
2928adantr 452 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  Q  e.  A )
301adantr 452 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  R  e.  A )
31 simprl 733 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  t  e.  A )
32 cdleme32.l . . . . . . 7  |-  .<_  =  ( le `  K )
33 cdleme32.j . . . . . . 7  |-  .\/  =  ( join `  K )
34 cdleme32.m . . . . . . 7  |-  ./\  =  ( meet `  K )
35 cdleme32.a . . . . . . 7  |-  A  =  ( Atoms `  K )
36 cdleme32.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
37 cdleme32.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
38 cdleme32.d . . . . . . 7  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
3932, 33, 34, 35, 36, 37, 38, 6cdleme4a 30725 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  R  e.  A )  /\  t  e.  A )  ->  Y  .<_  ( P  .\/  Q
) )
4025, 27, 29, 30, 31, 39syl131anc 1197 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  ( t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) ) ) )  ->  Y  .<_  ( P  .\/  Q
) )
4140ex 424 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( (
t  e.  A  /\  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) ) )  ->  Y  .<_  ( P  .\/  Q
) ) )
42 simp1 957 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
43 simp2rr 1027 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  -.  R  .<_  W )
44 simp2l 983 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  P  =/=  Q )
4510, 32, 33, 34, 35, 36, 37, 38, 6, 7cdleme25cl 30843 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( P  =/= 
Q  /\  R  .<_  ( P  .\/  Q ) ) )  ->  Z  e.  B )
4642, 1, 43, 44, 2, 45syl122anc 1193 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  Z  e.  B )
47 simp11 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
48 simp12 988 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
49 simp13 989 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
5032, 33, 35, 36cdlemb2 30527 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/= 
Q )  ->  E. t  e.  A  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) ) )
5147, 48, 49, 44, 50syl121anc 1189 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  E. t  e.  A  ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q ) ) )
5213, 21, 22, 24, 41, 46, 51riotasv3d 6561 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  /\  B  e. 
_V )  ->  Z  .<_  ( P  .\/  Q
) )
5312, 52mpan2 653 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  Z  .<_  ( P  .\/  Q ) )
549, 53eqbrtrd 4196 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  / 
s ]_ N  .<_  ( P 
.\/  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   F/wnf 1550    = wceq 1649    e. wcel 1721    =/= wne 2571   A.wral 2670   E.wrex 2671   _Vcvv 2920   [_csb 3215   ifcif 3703   class class class wbr 4176   ` cfv 5417  (class class class)co 6044   iota_crio 6505   Basecbs 13428   lecple 13495   joincjn 14360   meetcmee 14361   Atomscatm 29750   HLchlt 29837   LHypclh 30470
This theorem is referenced by:  cdleme41sn3aw  30960  cdleme46fsvlpq  30991
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-llines 29984  df-lplanes 29985  df-lvols 29986  df-lines 29987  df-psubsp 29989  df-pmap 29990  df-padd 30282  df-lhyp 30474
  Copyright terms: Public domain W3C validator