Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme43aN Unicode version

Theorem cdleme43aN 31300
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT p. 115 penultimate line: g(f(r)) = (p v q) ^ (g(s) v v1) (Contributed by NM, 20-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme43.b  |-  B  =  ( Base `  K
)
cdleme43.l  |-  .<_  =  ( le `  K )
cdleme43.j  |-  .\/  =  ( join `  K )
cdleme43.m  |-  ./\  =  ( meet `  K )
cdleme43.a  |-  A  =  ( Atoms `  K )
cdleme43.h  |-  H  =  ( LHyp `  K
)
cdleme43.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme43.x  |-  X  =  ( ( Q  .\/  P )  ./\  W )
cdleme43.c  |-  C  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme43.f  |-  Z  =  ( ( P  .\/  Q )  ./\  ( C  .\/  ( ( R  .\/  S )  ./\  W )
) )
cdleme43.d  |-  D  =  ( ( S  .\/  X )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )
cdleme43.g  |-  G  =  ( ( Q  .\/  P )  ./\  ( D  .\/  ( ( Z  .\/  S )  ./\  W )
) )
cdleme43.e  |-  E  =  ( ( D  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  D )  ./\  W )
) )
cdleme43.v  |-  V  =  ( ( Z  .\/  S )  ./\  W )
cdleme43.y  |-  Y  =  ( ( R  .\/  D )  ./\  W )
Assertion
Ref Expression
cdleme43aN  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  G  =  ( ( P  .\/  Q ) 
./\  ( D  .\/  V ) ) )

Proof of Theorem cdleme43aN
StepHypRef Expression
1 cdleme43.j . . . 4  |-  .\/  =  ( join `  K )
2 cdleme43.a . . . 4  |-  A  =  ( Atoms `  K )
31, 2hlatjcom 30179 . . 3  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
4 cdleme43.v . . . . 5  |-  V  =  ( ( Z  .\/  S )  ./\  W )
54oveq2i 5885 . . . 4  |-  ( D 
.\/  V )  =  ( D  .\/  (
( Z  .\/  S
)  ./\  W )
)
65a1i 10 . . 3  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( D  .\/  V
)  =  ( D 
.\/  ( ( Z 
.\/  S )  ./\  W ) ) )
73, 6oveq12d 5892 . 2  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( ( P  .\/  Q )  ./\  ( D  .\/  V ) )  =  ( ( Q  .\/  P )  ./\  ( D  .\/  ( ( Z  .\/  S )  ./\  W )
) ) )
8 cdleme43.g . 2  |-  G  =  ( ( Q  .\/  P )  ./\  ( D  .\/  ( ( Z  .\/  S )  ./\  W )
) )
97, 8syl6reqr 2347 1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  G  =  ( ( P  .\/  Q ) 
./\  ( D  .\/  V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   Atomscatm 30075   HLchlt 30162   LHypclh 30795
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-join 14126  df-lat 14168  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163
  Copyright terms: Public domain W3C validator