Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme43frv1snN Structured version   Unicode version

Theorem cdleme43frv1snN 31267
Description: Value of  [_ R  /  s ]_ N when  -.  R  .<_  ( P  .\/  Q ). (Contributed by NM, 30-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefr27.b  |-  B  =  ( Base `  K
)
cdlemefr27.l  |-  .<_  =  ( le `  K )
cdlemefr27.j  |-  .\/  =  ( join `  K )
cdlemefr27.m  |-  ./\  =  ( meet `  K )
cdlemefr27.a  |-  A  =  ( Atoms `  K )
cdlemefr27.h  |-  H  =  ( LHyp `  K
)
cdlemefr27.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemefr27.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdlemefr27.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
cdleme43fr.x  |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
Assertion
Ref Expression
cdleme43frv1snN  |-  ( ( R  e.  A  /\  -.  R  .<_  ( P 
.\/  Q ) )  ->  [_ R  /  s ]_ N  =  X
)
Distinct variable groups:    A, s    .\/ , s    .<_ , s    ./\ , s    P, s    Q, s    R, s    U, s    W, s    H, s    K, s    B, s
Allowed substitution hints:    C( s)    I(
s)    N( s)    X( s)

Proof of Theorem cdleme43frv1snN
StepHypRef Expression
1 cdlemefr27.c . 2  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
2 cdlemefr27.n . 2  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
3 cdleme43fr.x . 2  |-  X  =  ( ( R  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  R )  ./\  W )
) )
41, 2, 3cdleme31sn2 31248 1  |-  ( ( R  e.  A  /\  -.  R  .<_  ( P 
.\/  Q ) )  ->  [_ R  /  s ]_ N  =  X
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   [_csb 3253   ifcif 3741   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   Basecbs 13471   lecple 13538   joincjn 14403   meetcmee 14404   Atomscatm 30123   LHypclh 30843
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-iota 5420  df-fv 5464  df-ov 6086
  Copyright terms: Public domain W3C validator