Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme48fvg Unicode version

Theorem cdleme48fvg 30507
Description: Remove  P  =/=  Q condition in cdleme48fv 30506. TODO: Can this replace uses of cdleme32a 30448? TODO: Can this be used to help prove the  R or  S case where  X is an atom? TODO: Can this be proved more directly by eliminating  P  =/=  Q in earlier theorems? Should this replace uses of cdleme48fv 30506? (Contributed by NM, 23-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46.b  |-  B  =  ( Base `  K
)
cdlemef46.l  |-  .<_  =  ( le `  K )
cdlemef46.j  |-  .\/  =  ( join `  K )
cdlemef46.m  |-  ./\  =  ( meet `  K )
cdlemef46.a  |-  A  =  ( Atoms `  K )
cdlemef46.h  |-  H  =  ( LHyp `  K
)
cdlemef46.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef46.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs46.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef46.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
Assertion
Ref Expression
cdleme48fvg  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  ->  ( F `  X )  =  ( ( F `  S
)  .\/  ( X  ./\ 
W ) ) )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    .\/ , s, t, x, y, z    K, s, t, x, y, z    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    S, s, t, x, y, z    X, s, t, x, z
Allowed substitution hints:    D( t)    E( t, s)    F( x, y, z, t, s)    X( y)

Proof of Theorem cdleme48fvg
StepHypRef Expression
1 simpl3r 1011 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  ( S  .\/  ( X  ./\  W
) )  =  X )
2 simp3ll 1026 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  ->  S  e.  A
)
32adantr 451 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  S  e.  A )
4 cdlemef46.b . . . . . . 7  |-  B  =  ( Base `  K
)
5 cdlemef46.a . . . . . . 7  |-  A  =  ( Atoms `  K )
64, 5atbase 29297 . . . . . 6  |-  ( S  e.  A  ->  S  e.  B )
73, 6syl 15 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  S  e.  B )
8 cdlemef46.f . . . . . 6  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
98cdleme31id 30401 . . . . 5  |-  ( ( S  e.  B  /\  P  =  Q )  ->  ( F `  S
)  =  S )
107, 9sylancom 648 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  ( F `  S )  =  S )
1110oveq1d 5915 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  ( ( F `  S )  .\/  ( X  ./\  W
) )  =  ( S  .\/  ( X 
./\  W ) ) )
12 simp2l 981 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  ->  X  e.  B
)
138cdleme31id 30401 . . . 4  |-  ( ( X  e.  B  /\  P  =  Q )  ->  ( F `  X
)  =  X )
1412, 13sylan 457 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  ( F `  X )  =  X )
151, 11, 143eqtr4rd 2359 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =  Q )  ->  ( F `  X )  =  ( ( F `  S
)  .\/  ( X  ./\ 
W ) ) )
16 simpl1 958 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =/=  Q
)  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
17 simpr 447 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =/=  Q
)  ->  P  =/=  Q )
18 simpl2 959 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =/=  Q
)  ->  ( X  e.  B  /\  -.  X  .<_  W ) )
19 simpl3 960 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =/=  Q
)  ->  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )
20 cdlemef46.l . . . 4  |-  .<_  =  ( le `  K )
21 cdlemef46.j . . . 4  |-  .\/  =  ( join `  K )
22 cdlemef46.m . . . 4  |-  ./\  =  ( meet `  K )
23 cdlemef46.h . . . 4  |-  H  =  ( LHyp `  K
)
24 cdlemef46.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
25 cdlemef46.d . . . 4  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
26 cdlemefs46.e . . . 4  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
274, 20, 21, 22, 5, 23, 24, 25, 26, 8cdleme48fv 30506 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( F `  X )  =  ( ( F `  S
)  .\/  ( X  ./\ 
W ) ) )
2816, 17, 18, 19, 27syl121anc 1187 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  /\  P  =/=  Q
)  ->  ( F `  X )  =  ( ( F `  S
)  .\/  ( X  ./\ 
W ) ) )
2915, 28pm2.61dane 2557 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  ( S  .\/  ( X 
./\  W ) )  =  X ) )  ->  ( F `  X )  =  ( ( F `  S
)  .\/  ( X  ./\ 
W ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701    =/= wne 2479   A.wral 2577   [_csb 3115   ifcif 3599   class class class wbr 4060    e. cmpt 4114   ` cfv 5292  (class class class)co 5900   iota_crio 6339   Basecbs 13195   lecple 13262   joincjn 14127   meetcmee 14128   Atomscatm 29271   HLchlt 29358   LHypclh 29991
This theorem is referenced by:  cdlemg2fvlem  30601
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-iin 3945  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-undef 6340  df-riota 6346  df-poset 14129  df-plt 14141  df-lub 14157  df-glb 14158  df-join 14159  df-meet 14160  df-p0 14194  df-p1 14195  df-lat 14201  df-clat 14263  df-oposet 29184  df-ol 29186  df-oml 29187  df-covers 29274  df-ats 29275  df-atl 29306  df-cvlat 29330  df-hlat 29359  df-llines 29505  df-lplanes 29506  df-lvols 29507  df-lines 29508  df-psubsp 29510  df-pmap 29511  df-padd 29803  df-lhyp 29995
  Copyright terms: Public domain W3C validator