Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefr29exN Structured version   Unicode version

Theorem cdlemefr29exN 31126
Description: Lemma for cdlemefs29bpre1N 31141. (Compare cdleme25a 31077.) TODO: FIX COMMENT TODO: IS THIS NEEDED? (Contributed by NM, 28-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefr29.b  |-  B  =  ( Base `  K
)
cdlemefr29.l  |-  .<_  =  ( le `  K )
cdlemefr29.j  |-  .\/  =  ( join `  K )
cdlemefr29.m  |-  ./\  =  ( meet `  K )
cdlemefr29.a  |-  A  =  ( Atoms `  K )
cdlemefr29.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdlemefr29exN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) )
Distinct variable groups:    A, s    B, s    H, s    K, s    .<_ , s    ./\ , s    P, s    Q, s    W, s    X, s
Allowed substitution hints:    C( s)    .\/ ( s)

Proof of Theorem cdlemefr29exN
StepHypRef Expression
1 simp11 987 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2r 984 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  ( X  e.  B  /\  -.  X  .<_  W ) )
3 cdlemefr29.b . . . 4  |-  B  =  ( Base `  K
)
4 cdlemefr29.l . . . 4  |-  .<_  =  ( le `  K )
5 cdlemefr29.j . . . 4  |-  .\/  =  ( join `  K )
6 cdlemefr29.m . . . 4  |-  ./\  =  ( meet `  K )
7 cdlemefr29.a . . . 4  |-  A  =  ( Atoms `  K )
8 cdlemefr29.h . . . 4  |-  H  =  ( LHyp `  K
)
93, 4, 5, 6, 7, 8lhpmcvr2 30748 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X ) )
101, 2, 9syl2anc 643 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  E. s  e.  A  ( -.  s  .<_  W  /\  (
s  .\/  ( X  ./\ 
W ) )  =  X ) )
11 nfv 1629 . . . 4  |-  F/ s ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )
12 nfv 1629 . . . 4  |-  F/ s ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )
13 nfra1 2748 . . . 4  |-  F/ s A. s  e.  A  C  e.  B
1411, 12, 13nf3an 1849 . . 3  |-  F/ s ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )
15 simp11l 1068 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  K  e.  HL )
1615adantr 452 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  K  e.  HL )
17 hllat 30088 . . . . . . . . 9  |-  ( K  e.  HL  ->  K  e.  Lat )
1816, 17syl 16 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  K  e.  Lat )
19 simpl3 962 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  A. s  e.  A  C  e.  B )
20 simprl 733 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  s  e.  A )
21 rsp 2758 . . . . . . . . 9  |-  ( A. s  e.  A  C  e.  B  ->  ( s  e.  A  ->  C  e.  B ) )
2219, 20, 21sylc 58 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  C  e.  B )
2315, 17syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  K  e.  Lat )
24 simp2rl 1026 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  X  e.  B )
25 simp11r 1069 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  W  e.  H )
263, 8lhpbase 30722 . . . . . . . . . . 11  |-  ( W  e.  H  ->  W  e.  B )
2725, 26syl 16 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  W  e.  B )
283, 6latmcl 14472 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X  ./\  W
)  e.  B )
2923, 24, 27, 28syl3anc 1184 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  ( X  ./\  W )  e.  B )
3029adantr 452 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  ( X  ./\ 
W )  e.  B
)
313, 5latjcl 14471 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  C  e.  B  /\  ( X  ./\  W )  e.  B )  -> 
( C  .\/  ( X  ./\  W ) )  e.  B )
3218, 22, 30, 31syl3anc 1184 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  (
s  e.  A  /\  -.  s  .<_  W ) )  ->  ( C  .\/  ( X  ./\  W
) )  e.  B
)
3332expr 599 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  s  e.  A )  ->  ( -.  s  .<_  W  -> 
( C  .\/  ( X  ./\  W ) )  e.  B ) )
3433adantrd 455 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  s  e.  A )  ->  (
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  ->  ( C  .\/  ( X  ./\  W ) )  e.  B ) )
3534ancld 537 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  /\  s  e.  A )  ->  (
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  ->  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) ) )
3635ex 424 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  (
s  e.  A  -> 
( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) ) ) )
3714, 36reximdai 2806 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  ( E. s  e.  A  ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  /\  ( C 
.\/  ( X  ./\  W ) )  e.  B
) ) )
3810, 37mpd 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  A. s  e.  A  C  e.  B )  ->  E. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  /\  ( C  .\/  ( X 
./\  W ) )  e.  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   Latclat 14466   Atomscatm 29988   HLchlt 30075   LHypclh 30708
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29901  df-ol 29903  df-oml 29904  df-covers 29991  df-ats 29992  df-atl 30023  df-cvlat 30047  df-hlat 30076  df-lhyp 30712
  Copyright terms: Public domain W3C validator