Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefr32snb Unicode version

Theorem cdlemefr32snb 30594
Description: Show closure of  [_ R  /  s ]_ N. (Contributed by NM, 28-Mar-2013.)
Hypotheses
Ref Expression
cdlemefr27.b  |-  B  =  ( Base `  K
)
cdlemefr27.l  |-  .<_  =  ( le `  K )
cdlemefr27.j  |-  .\/  =  ( join `  K )
cdlemefr27.m  |-  ./\  =  ( meet `  K )
cdlemefr27.a  |-  A  =  ( Atoms `  K )
cdlemefr27.h  |-  H  =  ( LHyp `  K
)
cdlemefr27.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemefr27.c  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdlemefr27.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
Assertion
Ref Expression
cdlemefr32snb  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  [_ R  /  s ]_ N  e.  B )
Distinct variable groups:    A, s    .\/ , s    .<_ , s    ./\ , s    P, s    Q, s    R, s    U, s    W, s
Allowed substitution hints:    B( s)    C( s)    H( s)    I( s)    K( s)    N( s)

Proof of Theorem cdlemefr32snb
StepHypRef Expression
1 cdlemefr27.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemefr27.l . . . 4  |-  .<_  =  ( le `  K )
3 cdlemefr27.j . . . 4  |-  .\/  =  ( join `  K )
4 cdlemefr27.m . . . 4  |-  ./\  =  ( meet `  K )
5 cdlemefr27.a . . . 4  |-  A  =  ( Atoms `  K )
6 cdlemefr27.h . . . 4  |-  H  =  ( LHyp `  K
)
7 cdlemefr27.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdlemefr27.c . . . 4  |-  C  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
9 cdlemefr27.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
101, 2, 3, 4, 5, 6, 7, 8, 9cdlemefr32sn2aw 30593 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  ( [_ R  /  s ]_ N  e.  A  /\  -.  [_ R  / 
s ]_ N  .<_  W ) )
1110simpld 445 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  [_ R  /  s ]_ N  e.  A )
121, 5atbase 29479 . 2  |-  ( [_ R  /  s ]_ N  e.  A  ->  [_ R  /  s ]_ N  e.  B )
1311, 12syl 15 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  -.  R  .<_  ( P  .\/  Q
) )  ->  [_ R  /  s ]_ N  e.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   [_csb 3081   ifcif 3565   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem is referenced by:  cdlemefr29clN  30596  cdlemefr32fvaN  30598  cdlemefr32fva1  30599
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177
  Copyright terms: Public domain W3C validator