Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29clN Structured version   Unicode version

Theorem cdlemefrs29clN 31097
Description: TODO: NOT USED? Show closure of the unique element in cdlemefrs29cpre1 31096. (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefrs27.b  |-  B  =  ( Base `  K
)
cdlemefrs27.l  |-  .<_  =  ( le `  K )
cdlemefrs27.j  |-  .\/  =  ( join `  K )
cdlemefrs27.m  |-  ./\  =  ( meet `  K )
cdlemefrs27.a  |-  A  =  ( Atoms `  K )
cdlemefrs27.h  |-  H  =  ( LHyp `  K
)
cdlemefrs27.eq  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
cdlemefrs27.nb  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  N  e.  B )
cdlemefrs27.rnb  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B
)
cdlemefrs29cl.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
Assertion
Ref Expression
cdlemefrs29clN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  O  e.  B )
Distinct variable groups:    z, s, A    H, s    .\/ , s    K, s    .<_ , s    P, s    Q, s    R, s    W, s    ps, s    z, A    z, B    z, H    z, K    z, 
.<_    z, N    z, P    z, Q    z, R    z, W    ps, z    B, s   
z,  .\/    ./\ , s, z    ph, z
Allowed substitution hints:    ph( s)    N( s)    O( z, s)

Proof of Theorem cdlemefrs29clN
StepHypRef Expression
1 simpl11 1032 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl2r 1011 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
3 simpl3 962 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ps )
4 simpr 448 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  s  e.  A )
5 cdlemefrs27.b . . . . . . . 8  |-  B  =  ( Base `  K
)
6 cdlemefrs27.l . . . . . . . 8  |-  .<_  =  ( le `  K )
7 cdlemefrs27.j . . . . . . . 8  |-  .\/  =  ( join `  K )
8 cdlemefrs27.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
9 cdlemefrs27.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
10 cdlemefrs27.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
11 cdlemefrs27.eq . . . . . . . 8  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
125, 6, 7, 8, 9, 10, 11cdlemefrs29pre00 31093 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  <->  ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R ) ) )
131, 2, 3, 4, 12syl31anc 1187 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  <->  ( -.  s  .<_  W  /\  (
s  .\/  ( R  ./\ 
W ) )  =  R ) ) )
1413imbi1d 309 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( (
( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) )  <->  ( ( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) ) )
1514ralbidva 2713 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
1615riotabidv 6543 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( iota_ z  e.  B A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )  =  (
iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
17 cdlemefrs29cl.o . . 3  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
1816, 17syl6reqr 2486 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  O  =  ( iota_ z  e.  B A. s  e.  A  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) ) )
19 cdlemefrs27.nb . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  N  e.  B )
20 cdlemefrs27.rnb . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B
)
215, 6, 7, 8, 9, 10, 11, 19, 20cdlemefrs29cpre1 31096 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  E! z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
22 fvex 5734 . . . . 5  |-  ( Base `  K )  e.  _V
235, 22eqeltri 2505 . . . 4  |-  B  e. 
_V
2423riotaclb 6582 . . 3  |-  ( E! z  e.  B  A. s  e.  A  (
( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) )  <->  ( iota_ z  e.  B A. s  e.  A  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )  e.  B )
2521, 24sylib 189 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( iota_ z  e.  B A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )  e.  B
)
2618, 25eqeltrd 2509 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  O  e.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E!wreu 2699   _Vcvv 2948   [_csb 3243   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   iota_crio 6534   Basecbs 13459   lecple 13526   joincjn 14391   meetcmee 14392   Atomscatm 29962   HLchlt 30049   LHypclh 30682
This theorem is referenced by:  cdlemefr29clN  31105  cdlemefs29clN  31117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14393  df-plt 14405  df-lub 14421  df-glb 14422  df-join 14423  df-meet 14424  df-p0 14458  df-p1 14459  df-lat 14465  df-clat 14527  df-oposet 29875  df-ol 29877  df-oml 29878  df-covers 29965  df-ats 29966  df-atl 29997  df-cvlat 30021  df-hlat 30050  df-lhyp 30686
  Copyright terms: Public domain W3C validator