Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29clN Unicode version

Theorem cdlemefrs29clN 30515
Description: TODO: NOT USED? Show closure of the unique element in cdlemefrs29cpre1 30514. (Contributed by NM, 29-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefrs27.b  |-  B  =  ( Base `  K
)
cdlemefrs27.l  |-  .<_  =  ( le `  K )
cdlemefrs27.j  |-  .\/  =  ( join `  K )
cdlemefrs27.m  |-  ./\  =  ( meet `  K )
cdlemefrs27.a  |-  A  =  ( Atoms `  K )
cdlemefrs27.h  |-  H  =  ( LHyp `  K
)
cdlemefrs27.eq  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
cdlemefrs27.nb  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  N  e.  B )
cdlemefrs27.rnb  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B
)
cdlemefrs29cl.o  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
Assertion
Ref Expression
cdlemefrs29clN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  O  e.  B )
Distinct variable groups:    z, s, A    H, s    .\/ , s    K, s    .<_ , s    P, s    Q, s    R, s    W, s    ps, s    z, A    z, B    z, H    z, K    z, 
.<_    z, N    z, P    z, Q    z, R    z, W    ps, z    B, s   
z,  .\/    ./\ , s, z    ph, z
Allowed substitution hints:    ph( s)    N( s)    O( z, s)

Proof of Theorem cdlemefrs29clN
StepHypRef Expression
1 simpl11 1032 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl2r 1011 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
3 simpl3 962 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ps )
4 simpr 448 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  s  e.  A )
5 cdlemefrs27.b . . . . . . . 8  |-  B  =  ( Base `  K
)
6 cdlemefrs27.l . . . . . . . 8  |-  .<_  =  ( le `  K )
7 cdlemefrs27.j . . . . . . . 8  |-  .\/  =  ( join `  K )
8 cdlemefrs27.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
9 cdlemefrs27.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
10 cdlemefrs27.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
11 cdlemefrs27.eq . . . . . . . 8  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
125, 6, 7, 8, 9, 10, 11cdlemefrs29pre00 30511 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  <->  ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R ) ) )
131, 2, 3, 4, 12syl31anc 1187 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  <->  ( -.  s  .<_  W  /\  (
s  .\/  ( R  ./\ 
W ) )  =  R ) ) )
1413imbi1d 309 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  /\  s  e.  A
)  ->  ( (
( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) )  <->  ( ( -.  s  .<_  W  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) ) )
1514ralbidva 2667 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) )  <->  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
1615riotabidv 6489 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( iota_ z  e.  B A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )  =  (
iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) ) )
17 cdlemefrs29cl.o . . 3  |-  O  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
1816, 17syl6reqr 2440 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  O  =  ( iota_ z  e.  B A. s  e.  A  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) ) )
19 cdlemefrs27.nb . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  ph ) ) )  ->  N  e.  B )
20 cdlemefrs27.rnb . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  [_ R  /  s ]_ N  e.  B
)
215, 6, 7, 8, 9, 10, 11, 19, 20cdlemefrs29cpre1 30514 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  E! z  e.  B  A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
22 fvex 5684 . . . . 5  |-  ( Base `  K )  e.  _V
235, 22eqeltri 2459 . . . 4  |-  B  e. 
_V
2423riotaclb 6528 . . 3  |-  ( E! z  e.  B  A. s  e.  A  (
( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) )  <->  ( iota_ z  e.  B A. s  e.  A  ( (
( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  -> 
z  =  ( N 
.\/  ( R  ./\  W ) ) ) )  e.  B )
2521, 24sylib 189 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  ( iota_ z  e.  B A. s  e.  A  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )  e.  B
)
2618, 25eqeltrd 2463 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  ps )  ->  O  e.  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651   E!wreu 2653   _Vcvv 2901   [_csb 3196   class class class wbr 4155   ` cfv 5396  (class class class)co 6022   iota_crio 6480   Basecbs 13398   lecple 13465   joincjn 14330   meetcmee 14331   Atomscatm 29380   HLchlt 29467   LHypclh 30100
This theorem is referenced by:  cdlemefr29clN  30523  cdlemefs29clN  30535
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-undef 6481  df-riota 6487  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-p1 14398  df-lat 14404  df-clat 14466  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-lhyp 30104
  Copyright terms: Public domain W3C validator