Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs29pre00 Structured version   Unicode version

Theorem cdlemefrs29pre00 31129
Description: ***START OF VALUE AT ATOM STUFF TO REPLACE ONES BELOW*** FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat 30764. (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs29.b  |-  B  =  ( Base `  K
)
cdlemefrs29.l  |-  .<_  =  ( le `  K )
cdlemefrs29.j  |-  .\/  =  ( join `  K )
cdlemefrs29.m  |-  ./\  =  ( meet `  K )
cdlemefrs29.a  |-  A  =  ( Atoms `  K )
cdlemefrs29.h  |-  H  =  ( LHyp `  K
)
cdlemefrs29.eq  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cdlemefrs29pre00  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  <->  ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R ) ) )

Proof of Theorem cdlemefrs29pre00
StepHypRef Expression
1 simpl3 962 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ps )
2 cdlemefrs29.eq . . . . . . 7  |-  ( s  =  R  ->  ( ph 
<->  ps ) )
32pm5.32ri 620 . . . . . 6  |-  ( (
ph  /\  s  =  R )  <->  ( ps  /\  s  =  R ) )
43baibr 873 . . . . 5  |-  ( ps 
->  ( s  =  R  <-> 
( ph  /\  s  =  R ) ) )
51, 4syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( s  =  R  <-> 
( ph  /\  s  =  R ) ) )
6 cdlemefrs29.l . . . . . . . . . 10  |-  .<_  =  ( le `  K )
7 cdlemefrs29.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
8 eqid 2435 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
9 cdlemefrs29.a . . . . . . . . . 10  |-  A  =  ( Atoms `  K )
10 cdlemefrs29.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
116, 7, 8, 9, 10lhpmat 30764 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  ./\  W
)  =  ( 0.
`  K ) )
12113adant3 977 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  ->  ( R  ./\  W )  =  ( 0.
`  K ) )
1312adantr 452 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( R  ./\  W
)  =  ( 0.
`  K ) )
1413oveq2d 6089 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( s  .\/  ( R  ./\  W ) )  =  ( s  .\/  ( 0. `  K ) ) )
15 simpl1l 1008 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  K  e.  HL )
16 hlol 30096 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  OL )
1715, 16syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  K  e.  OL )
18 cdlemefrs29.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
1918, 9atbase 30024 . . . . . . . 8  |-  ( s  e.  A  ->  s  e.  B )
2019adantl 453 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  s  e.  B )
21 cdlemefrs29.j . . . . . . . 8  |-  .\/  =  ( join `  K )
2218, 21, 8olj01 29960 . . . . . . 7  |-  ( ( K  e.  OL  /\  s  e.  B )  ->  ( s  .\/  ( 0. `  K ) )  =  s )
2317, 20, 22syl2anc 643 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( s  .\/  ( 0. `  K ) )  =  s )
2414, 23eqtrd 2467 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( s  .\/  ( R  ./\  W ) )  =  s )
2524eqeq1d 2443 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( ( s  .\/  ( R  ./\  W ) )  =  R  <->  s  =  R ) )
2625anbi2d 685 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( ( ph  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  <->  ( ph  /\  s  =  R ) ) )
275, 25, 263bitr4d 277 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( ( s  .\/  ( R  ./\  W ) )  =  R  <->  ( ph  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) ) )
2827anbi2d 685 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  <->  ( -.  s  .<_  W  /\  ( ph  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) ) ) )
29 anass 631 . 2  |-  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  <->  ( -.  s  .<_  W  /\  ( ph  /\  ( s  .\/  ( R  ./\  W ) )  =  R ) ) )
3028, 29syl6rbbr 256 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ps )  /\  s  e.  A )  ->  ( ( ( -.  s  .<_  W  /\  ph )  /\  ( s 
.\/  ( R  ./\  W ) )  =  R )  <->  ( -.  s  .<_  W  /\  ( s 
.\/  ( R  ./\  W ) )  =  R ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   0.cp0 14458   OLcol 29909   Atomscatm 29998   HLchlt 30085   LHypclh 30718
This theorem is referenced by:  cdlemefrs29clN  31133  cdlemefrs32fva  31134  cdlemefs29pre00N  31146
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-lat 14467  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-lhyp 30722
  Copyright terms: Public domain W3C validator