Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefs29cpre1N Unicode version

Theorem cdlemefs29cpre1N 30607
Description: TODO FIX COMMENT (Contributed by NM, 26-Mar-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemefs32.b  |-  B  =  ( Base `  K
)
cdlemefs32.l  |-  .<_  =  ( le `  K )
cdlemefs32.j  |-  .\/  =  ( join `  K )
cdlemefs32.m  |-  ./\  =  ( meet `  K )
cdlemefs32.a  |-  A  =  ( Atoms `  K )
cdlemefs32.h  |-  H  =  ( LHyp `  K
)
cdlemefs32.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemefs32.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs32.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemefs32.i  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
cdlemefs32.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
Assertion
Ref Expression
cdlemefs29cpre1N  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  E! z  e.  B  A. s  e.  A  ( (
( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
Distinct variable groups:    t, s,
y, z, A    B, s, t, y, z    y, D    y, E    H, s,
t, y    .\/ , s, t, y, z    K, s, t, y    .<_ , s, t, y, z    ./\ , s,
t, y, z    z, N    P, s, t, y, z    Q, s, t, y, z    R, s, t, y   
t, U, y    W, s, t, y, z    D, s    z, H    z, K    z, R
Allowed substitution hints:    C( y, z, t, s)    D( z, t)    U( z, s)    E( z, t, s)    I( y, z, t, s)    N( y, t, s)

Proof of Theorem cdlemefs29cpre1N
StepHypRef Expression
1 cdlemefs32.b . 2  |-  B  =  ( Base `  K
)
2 cdlemefs32.l . 2  |-  .<_  =  ( le `  K )
3 cdlemefs32.j . 2  |-  .\/  =  ( join `  K )
4 cdlemefs32.m . 2  |-  ./\  =  ( meet `  K )
5 cdlemefs32.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemefs32.h . 2  |-  H  =  ( LHyp `  K
)
7 breq1 4026 . 2  |-  ( s  =  R  ->  (
s  .<_  ( P  .\/  Q )  <->  R  .<_  ( P 
.\/  Q ) ) )
8 simp1 955 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
9 simp3l 983 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  e.  A )
10 simp3rl 1028 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  -.  s  .<_  W )
119, 10jca 518 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  (
s  e.  A  /\  -.  s  .<_  W ) )
12 simp3rr 1029 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  s  .<_  ( P  .\/  Q
) )
13 simp2 956 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  P  =/=  Q )
14 cdlemefs32.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
15 cdlemefs32.d . . . 4  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
16 cdlemefs32.e . . . 4  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
17 cdlemefs32.i . . . 4  |-  I  =  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  E ) )
18 cdlemefs32.n . . . 4  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  C
)
191, 2, 3, 4, 5, 6, 14, 15, 16, 17, 18cdlemefs27cl 30602 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( s  e.  A  /\  -.  s  .<_  W )  /\  s  .<_  ( P  .\/  Q
)  /\  P  =/=  Q ) )  ->  N  e.  B )
208, 11, 12, 13, 19syl13anc 1184 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  P  =/=  Q  /\  (
s  e.  A  /\  ( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) ) ) )  ->  N  e.  B )
211, 2, 3, 4, 5, 6, 14, 15, 16, 17, 18cdlemefs32snb 30604 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  [_ R  / 
s ]_ N  e.  B
)
221, 2, 3, 4, 5, 6, 7, 20, 21cdlemefrs29cpre1 30587 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  /\  R  .<_  ( P  .\/  Q ) )  ->  E! z  e.  B  A. s  e.  A  ( (
( -.  s  .<_  W  /\  s  .<_  ( P 
.\/  Q ) )  /\  ( s  .\/  ( R  ./\  W ) )  =  R )  ->  z  =  ( N  .\/  ( R 
./\  W ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E!wreu 2545   ifcif 3565   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   iota_crio 6297   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177
  Copyright terms: Public domain W3C validator