Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeg46rjgN Structured version   Unicode version

Theorem cdlemeg46rjgN 31381
Description: NOT NEEDED? TODO FIX COMMENT r  \/ g(s) = r  \/ v2 p. 115 last line. (Contributed by NM, 2-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemef46g.b  |-  B  =  ( Base `  K
)
cdlemef46g.l  |-  .<_  =  ( le `  K )
cdlemef46g.j  |-  .\/  =  ( join `  K )
cdlemef46g.m  |-  ./\  =  ( meet `  K )
cdlemef46g.a  |-  A  =  ( Atoms `  K )
cdlemef46g.h  |-  H  =  ( LHyp `  K
)
cdlemef46g.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdlemef46g.d  |-  D  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdlemefs46g.e  |-  E  =  ( ( P  .\/  Q )  ./\  ( D  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdlemef46g.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( P  .\/  Q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P 
.\/  Q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
cdlemef46.v  |-  V  =  ( ( Q  .\/  P )  ./\  W )
cdlemef46.n  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
cdlemefs46.o  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
cdlemef46.g  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
cdlemeg46.y  |-  Y  =  ( ( R  .\/  ( G `  S ) )  ./\  W )
Assertion
Ref Expression
cdlemeg46rjgN  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  ( G `  S
) )  =  ( R  .\/  Y ) )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    .\/ , s, t, x, y, z    K, s, t, x, y, z    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    R, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z    S, s, t, x, y, z    a, b, c, u, v, A    B, a, b, c, u, v    v, D    G, s, t, x, y, z    H, a, b, c, u, v    .\/ , a, b, c, u, v    K, a, b, c, u, v    .<_ , a, b, c, u, v    ./\ , a, b, c, u, v    N, a, b, c    O, a, b, c    P, a, b, c, u, v    Q, a, b, c, u, v    R, a, b, c, u, v    S, a, b, c, u, v    V, a, b, c    W, a, b, c, u, v   
x, u, y, z, N    x, O, y, z    v, t    u, V    x, v, y, z, V    D, a, b, c    E, a, b, c    F, a, b, c, u, v   
t, N    U, a,
b, c, v    t, V    s, a, t, b, c
Allowed substitution hints:    D( u, t)    U( u)    E( v, u, t, s)    F( x, y, z, t, s)    G( v, u, a, b, c)    N( v, s)    O( v, u, t, s)    V( s)    Y( x, y, z, v, u, t, s, a, b, c)

Proof of Theorem cdlemeg46rjgN
StepHypRef Expression
1 cdlemef46g.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemef46g.l . . . 4  |-  .<_  =  ( le `  K )
3 cdlemef46g.j . . . 4  |-  .\/  =  ( join `  K )
4 cdlemef46g.m . . . 4  |-  ./\  =  ( meet `  K )
5 cdlemef46g.a . . . 4  |-  A  =  ( Atoms `  K )
6 cdlemef46g.h . . . 4  |-  H  =  ( LHyp `  K
)
7 cdlemef46g.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
8 cdlemef46.v . . . 4  |-  V  =  ( ( Q  .\/  P )  ./\  W )
9 eqid 2438 . . . 4  |-  ( ( S  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  =  ( ( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
10 eqid 2438 . . . 4  |-  ( ( P  .\/  Q ) 
./\  ( ( ( S  .\/  U ) 
./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( R  .\/  S
)  ./\  W )
) )  =  ( ( P  .\/  Q
)  ./\  ( (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( R  .\/  S
)  ./\  W )
) )
11 eqid 2438 . . . 4  |-  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )  =  ( ( S  .\/  V
)  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )
12 eqid 2438 . . . 4  |-  ( ( Q  .\/  P ) 
./\  ( ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )  .\/  (
( ( ( P 
.\/  Q )  ./\  ( ( ( S 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) ) )  .\/  ( ( R  .\/  S ) 
./\  W ) ) )  .\/  S ) 
./\  W ) ) )  =  ( ( Q  .\/  P ) 
./\  ( ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )  .\/  (
( ( ( P 
.\/  Q )  ./\  ( ( ( S 
.\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S ) 
./\  W ) ) )  .\/  ( ( R  .\/  S ) 
./\  W ) ) )  .\/  S ) 
./\  W ) ) )
13 eqid 2438 . . . 4  |-  ( ( ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) ) )  =  ( ( ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) )  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) ) )
14 eqid 2438 . . . 4  |-  ( ( ( ( P  .\/  Q )  ./\  ( (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( R  .\/  S
)  ./\  W )
) )  .\/  S
)  ./\  W )  =  ( ( ( ( P  .\/  Q
)  ./\  ( (
( S  .\/  U
)  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )  .\/  (
( R  .\/  S
)  ./\  W )
) )  .\/  S
)  ./\  W )
15 eqid 2438 . . . 4  |-  ( ( R  .\/  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W )  =  ( ( R  .\/  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W )
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15cdleme43cN 31350 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P 
.\/  Q ) )  ->  ( R  .\/  ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  =  ( R  .\/  (
( R  .\/  (
( S  .\/  V
)  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) ) )
17163adant3l 1181 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  =  ( R  .\/  (
( R  .\/  (
( S  .\/  V
)  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) ) )
18 simp1 958 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
19 simp21 991 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  P  =/=  Q )
20 simp23 993 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
21 simp3r 987 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q
) )
22 cdlemef46.n . . . . . 6  |-  N  =  ( ( v  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  v )  ./\  W
) ) )
23 cdlemefs46.o . . . . . 6  |-  O  =  ( ( Q  .\/  P )  ./\  ( N  .\/  ( ( u  .\/  v )  ./\  W
) ) )
24 cdlemef46.g . . . . . 6  |-  G  =  ( a  e.  B  |->  if ( ( Q  =/=  P  /\  -.  a  .<_  W ) ,  ( iota_ c  e.  B A. u  e.  A  ( ( -.  u  .<_  W  /\  ( u 
.\/  ( a  ./\  W ) )  =  a )  ->  c  =  ( if ( u  .<_  ( Q  .\/  P ) ,  ( iota_ b  e.  B A. v  e.  A  ( ( -.  v  .<_  W  /\  -.  v  .<_  ( Q 
.\/  P ) )  ->  b  =  O ) ) ,  [_ u  /  v ]_ N
)  .\/  ( a  ./\  W ) ) ) ) ,  a ) )
251, 2, 3, 4, 5, 6, 8, 22, 23, 24cdlemeg47b 31367 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  -.  S  .<_  ( P  .\/  Q
) )  ->  ( G `  S )  =  [_ S  /  v ]_ N )
2618, 19, 20, 21, 25syl121anc 1190 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( G `  S )  =  [_ S  /  v ]_ N
)
27 simp23l 1079 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  S  e.  A )
2822, 11cdleme31sc 31243 . . . . 5  |-  ( S  e.  A  ->  [_ S  /  v ]_ N  =  ( ( S 
.\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S ) 
./\  W ) ) ) )
2927, 28syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  [_ S  / 
v ]_ N  =  ( ( S  .\/  V
)  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )
3026, 29eqtrd 2470 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( G `  S )  =  ( ( S  .\/  V
)  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )
3130oveq2d 6099 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  ( G `  S
) )  =  ( R  .\/  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) ) )
32 cdlemeg46.y . . . 4  |-  Y  =  ( ( R  .\/  ( G `  S ) )  ./\  W )
3331oveq1d 6098 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( ( R  .\/  ( G `  S ) )  ./\  W )  =  ( ( R  .\/  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) )
3432, 33syl5eq 2482 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  Y  =  ( ( R  .\/  ( ( S  .\/  V )  ./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) )
3534oveq2d 6099 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  Y )  =  ( R  .\/  ( ( R  .\/  ( ( S  .\/  V ) 
./\  ( P  .\/  ( ( Q  .\/  S )  ./\  W )
) ) )  ./\  W ) ) )
3617, 31, 353eqtr4d 2480 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  ( R  .<_  ( P 
.\/  Q )  /\  -.  S  .<_  ( P 
.\/  Q ) ) )  ->  ( R  .\/  ( G `  S
) )  =  ( R  .\/  Y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   [_csb 3253   ifcif 3741   class class class wbr 4214    e. cmpt 4268   ` cfv 5456  (class class class)co 6083   iota_crio 6544   Basecbs 13471   lecple 13538   joincjn 14403   meetcmee 14404   Atomscatm 30123   HLchlt 30210   LHypclh 30843
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-clat 14539  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211  df-lines 30360  df-psubsp 30362  df-pmap 30363  df-padd 30655  df-lhyp 30847
  Copyright terms: Public domain W3C validator