Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemesner Unicode version

Theorem cdlemesner 30485
Description: Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012.)
Hypotheses
Ref Expression
cdlemesner.l  |-  .<_  =  ( le `  K )
cdlemesner.j  |-  .\/  =  ( join `  K )
cdlemesner.a  |-  A  =  ( Atoms `  K )
cdlemesner.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
cdlemesner  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  S  =/=  R )

Proof of Theorem cdlemesner
StepHypRef Expression
1 nbrne2 4041 . . 3  |-  ( ( R  .<_  ( P  .\/  Q )  /\  -.  S  .<_  ( P  .\/  Q ) )  ->  R  =/=  S )
213ad2ant3 978 . 2  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  R  =/=  S )
32necomd 2529 1  |-  ( ( K  e.  HL  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( R  .<_  ( P  .\/  Q
)  /\  -.  S  .<_  ( P  .\/  Q
) ) )  ->  S  =/=  R )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   Atomscatm 29453   HLchlt 29540   LHypclh 30173
This theorem is referenced by:  cdlemeda  30487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024
  Copyright terms: Public domain W3C validator