Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeulpq Structured version   Unicode version

Theorem cdlemeulpq 31091
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Dec-2012.)
Hypotheses
Ref Expression
cdleme0.l  |-  .<_  =  ( le `  K )
cdleme0.j  |-  .\/  =  ( join `  K )
cdleme0.m  |-  ./\  =  ( meet `  K )
cdleme0.a  |-  A  =  ( Atoms `  K )
cdleme0.h  |-  H  =  ( LHyp `  K
)
cdleme0.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdlemeulpq  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  U  .<_  ( P  .\/  Q ) )

Proof of Theorem cdlemeulpq
StepHypRef Expression
1 cdleme0.u . 2  |-  U  =  ( ( P  .\/  Q )  ./\  W )
2 simpll 732 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  K  e.  HL )
3 hllat 30235 . . . 4  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  K  e.  Lat )
5 simprl 734 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  P  e.  A )
6 simprr 735 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  Q  e.  A )
7 eqid 2438 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
8 cdleme0.j . . . . 5  |-  .\/  =  ( join `  K )
9 cdleme0.a . . . . 5  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 30238 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
112, 5, 6, 10syl3anc 1185 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  -> 
( P  .\/  Q
)  e.  ( Base `  K ) )
12 cdleme0.h . . . . 5  |-  H  =  ( LHyp `  K
)
137, 12lhpbase 30869 . . . 4  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
1413ad2antlr 709 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  W  e.  ( Base `  K ) )
15 cdleme0.l . . . 4  |-  .<_  =  ( le `  K )
16 cdleme0.m . . . 4  |-  ./\  =  ( meet `  K )
177, 15, 16latmle1 14510 . . 3  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  Q )  ./\  W )  .<_  ( P  .\/  Q ) )
184, 11, 14, 17syl3anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  -> 
( ( P  .\/  Q )  ./\  W )  .<_  ( P  .\/  Q
) )
191, 18syl5eqbr 4248 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A ) )  ->  U  .<_  ( P  .\/  Q ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   Basecbs 13474   lecple 13541   joincjn 14406   meetcmee 14407   Latclat 14479   Atomscatm 30135   HLchlt 30222   LHypclh 30855
This theorem is referenced by:  cdleme01N  31092  cdleme0ex1N  31094  cdleme1  31098  cdlemednuN  31171  cdleme21c  31198  cdleme22e  31215  cdleme22eALTN  31216  cdleme35fnpq  31320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-glb 14437  df-meet 14439  df-lat 14480  df-ats 30139  df-atl 30170  df-cvlat 30194  df-hlat 30223  df-lhyp 30859
  Copyright terms: Public domain W3C validator