Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr0 Structured version   Unicode version

Theorem cdlemftr0 31365
Description: Special case of cdlemf 31360 showing existence of a non-identity translation. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
cdlemftr0.b  |-  B  =  ( Base `  K
)
cdlemftr0.h  |-  H  =  ( LHyp `  K
)
cdlemftr0.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemftr0  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. f  e.  T  f  =/=  (  _I  |`  B ) )
Distinct variable groups:    f, H    f, K    T, f    f, W
Allowed substitution hint:    B( f)

Proof of Theorem cdlemftr0
StepHypRef Expression
1 cdlemftr0.b . . 3  |-  B  =  ( Base `  K
)
2 cdlemftr0.h . . 3  |-  H  =  ( LHyp `  K
)
3 cdlemftr0.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
4 eqid 2436 . . 3  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
51, 2, 3, 4cdlemftr1 31364 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  ( ( ( trL `  K ) `  W
) `  f )  =/=  _I  ) )
6 simpl 444 . . 3  |-  ( ( f  =/=  (  _I  |`  B )  /\  (
( ( trL `  K
) `  W ) `  f )  =/=  _I  )  ->  f  =/=  (  _I  |`  B ) )
76reximi 2813 . 2  |-  ( E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  (
( ( trL `  K
) `  W ) `  f )  =/=  _I  )  ->  E. f  e.  T  f  =/=  (  _I  |`  B ) )
85, 7syl 16 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. f  e.  T  f  =/=  (  _I  |`  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   E.wrex 2706    _I cid 4493    |` cres 4880   ` cfv 5454   Basecbs 13469   HLchlt 30148   LHypclh 30781   LTrncltrn 30898   trLctrl 30955
This theorem is referenced by:  tendo0mul  31623  tendo0mulr  31624  tendo1ne0  31625  tendoconid  31626  cdleml4N  31776  erngdv  31790  erngdv-rN  31798
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-map 7020  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-llines 30295  df-lplanes 30296  df-lvols 30297  df-lines 30298  df-psubsp 30300  df-pmap 30301  df-padd 30593  df-lhyp 30785  df-laut 30786  df-ldil 30901  df-ltrn 30902  df-trl 30956
  Copyright terms: Public domain W3C validator