Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemftr1 Unicode version

Theorem cdlemftr1 30756
Description: Part of proof of Lemma G of [Crawley] p. 116, sixth line of third paragraph on p. 117: there is "a translation h, different from the identity, such that tr h  =/= tr f." (Contributed by NM, 25-Jul-2013.)
Hypotheses
Ref Expression
cdlemftr.b  |-  B  =  ( Base `  K
)
cdlemftr.h  |-  H  =  ( LHyp `  K
)
cdlemftr.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemftr.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemftr1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  ( R `  f )  =/=  X ) )
Distinct variable groups:    f, X    f, H    f, K    R, f    T, f    f, W
Allowed substitution hint:    B( f)

Proof of Theorem cdlemftr1
StepHypRef Expression
1 cdlemftr.b . . 3  |-  B  =  ( Base `  K
)
2 cdlemftr.h . . 3  |-  H  =  ( LHyp `  K
)
3 cdlemftr.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
4 cdlemftr.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
51, 2, 3, 4cdlemftr2 30755 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  ( R `  f )  =/=  X  /\  ( R `  f )  =/=  X ) )
6 3simpa 952 . . 3  |-  ( ( f  =/=  (  _I  |`  B )  /\  ( R `  f )  =/=  X  /\  ( R `
 f )  =/= 
X )  ->  (
f  =/=  (  _I  |`  B )  /\  ( R `  f )  =/=  X ) )
76reximi 2650 . 2  |-  ( E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  ( R `  f )  =/=  X  /\  ( R `
 f )  =/= 
X )  ->  E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  ( R `  f )  =/=  X
) )
85, 7syl 15 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. f  e.  T  ( f  =/=  (  _I  |`  B )  /\  ( R `  f )  =/=  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    _I cid 4304    |` cres 4691   ` cfv 5255   Basecbs 13148   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347
This theorem is referenced by:  cdlemftr0  30757  cdlemg48  30926  cdlemk19x  31132
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348
  Copyright terms: Public domain W3C validator