Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg12b Structured version   Unicode version

Theorem cdlemg12b 31378
Description: The triples  <. P , 
( F `  P
) ,  ( F `
 ( G `  P ) ) >. and  <. Q , 
( F `  Q
) ,  ( F `
 ( G `  Q ) ) >. are centrally perspective. TODO: FIX COMMENT (Contributed by NM, 5-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg12b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  ( ( G `  P )  .\/  ( G `  Q
) ) )  .<_  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) ) )

Proof of Theorem cdlemg12b
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp2 958 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
) )
3 simp31 993 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  G  e.  T )
4 simp32 994 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  P  =/=  Q )
5 simp21 990 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
6 simp22l 1076 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  Q  e.  A )
7 simp33 995 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  -.  ( R `  G
)  .<_  ( P  .\/  Q ) )
8 cdlemg12.l . . . . . 6  |-  .<_  =  ( le `  K )
9 cdlemg12.j . . . . . 6  |-  .\/  =  ( join `  K )
10 cdlemg12.m . . . . . 6  |-  ./\  =  ( meet `  K )
11 cdlemg12.a . . . . . 6  |-  A  =  ( Atoms `  K )
12 cdlemg12.h . . . . . 6  |-  H  =  ( LHyp `  K
)
13 cdlemg12.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
14 cdlemg12b.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
158, 9, 10, 11, 12, 13, 14cdlemg11b 31376 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  /\  ( G  e.  T  /\  P  =/=  Q  /\  -.  ( R `  G )  .<_  ( P 
.\/  Q ) ) )  ->  ( P  .\/  Q )  =/=  (
( G `  P
)  .\/  ( G `  Q ) ) )
161, 5, 6, 3, 4, 7, 15syl123anc 1201 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( P  .\/  Q
)  =/=  ( ( G `  P ) 
.\/  ( G `  Q ) ) )
17 simp1l 981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  K  e.  HL )
18 simp1r 982 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  W  e.  H )
19 eqid 2435 . . . . . 6  |-  ( ( P  .\/  Q ) 
./\  W )  =  ( ( P  .\/  Q )  ./\  W )
208, 9, 10, 11, 12, 19cdlemg3a 31331 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  Q  e.  A )  ->  ( P  .\/  Q )  =  ( P  .\/  (
( P  .\/  Q
)  ./\  W )
) )
2117, 18, 5, 6, 20syl211anc 1190 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( P  .\/  Q
)  =  ( P 
.\/  ( ( P 
.\/  Q )  ./\  W ) ) )
22 simp22 991 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
2312, 13, 8, 9, 11, 10, 19cdlemg2k 31335 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  G  e.  T )  ->  (
( G `  P
)  .\/  ( G `  Q ) )  =  ( ( G `  P )  .\/  (
( P  .\/  Q
)  ./\  W )
) )
241, 5, 22, 3, 23syl121anc 1189 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( G `  P )  .\/  ( G `  Q )
)  =  ( ( G `  P ) 
.\/  ( ( P 
.\/  Q )  ./\  W ) ) )
2516, 21, 243netr3d 2624 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( P  .\/  (
( P  .\/  Q
)  ./\  W )
)  =/=  ( ( G `  P ) 
.\/  ( ( P 
.\/  Q )  ./\  W ) ) )
268, 9, 10, 11, 12, 13, 19cdlemg12a 31377 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  ( P  .\/  ( ( P  .\/  Q )  ./\  W )
)  =/=  ( ( G `  P ) 
.\/  ( ( P 
.\/  Q )  ./\  W ) ) ) )  ->  ( ( P 
.\/  ( ( P 
.\/  Q )  ./\  W ) )  ./\  (
( G `  P
)  .\/  ( ( P  .\/  Q )  ./\  W ) ) )  .<_  ( ( F `  ( G `  P ) )  .\/  ( ( P  .\/  Q ) 
./\  W ) ) )
271, 2, 3, 4, 25, 26syl113anc 1196 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  ( ( P  .\/  Q )  ./\  W )
)  ./\  ( ( G `  P )  .\/  ( ( P  .\/  Q )  ./\  W )
) )  .<_  ( ( F `  ( G `
 P ) ) 
.\/  ( ( P 
.\/  Q )  ./\  W ) ) )
2821, 24oveq12d 6091 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  ( ( G `  P )  .\/  ( G `  Q
) ) )  =  ( ( P  .\/  ( ( P  .\/  Q )  ./\  W )
)  ./\  ( ( G `  P )  .\/  ( ( P  .\/  Q )  ./\  W )
) ) )
29 simp23 992 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  ->  F  e.  T )
3012, 13, 8, 9, 11, 10, 19cdlemg2l 31337 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( ( F `
 ( G `  P ) )  .\/  ( ( P  .\/  Q )  ./\  W )
) )
311, 5, 22, 29, 3, 30syl122anc 1193 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( ( F `
 ( G `  P ) )  .\/  ( ( P  .\/  Q )  ./\  W )
) )
3227, 28, 313brtr4d 4234 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  P  =/= 
Q  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( ( P  .\/  Q )  ./\  ( ( G `  P )  .\/  ( G `  Q
) ) )  .<_  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   lecple 13528   joincjn 14393   meetcmee 14394   Atomscatm 29998   HLchlt 30085   LHypclh 30718   LTrncltrn 30835   trLctrl 30892
This theorem is referenced by:  cdlemg12c  31379
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-llines 30232  df-lplanes 30233  df-lvols 30234  df-lines 30235  df-psubsp 30237  df-pmap 30238  df-padd 30530  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839  df-trl 30893
  Copyright terms: Public domain W3C validator