Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg12e Unicode version

Theorem cdlemg12e 30836
Description: TODO: FIX COMMENT (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg12e.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
cdlemg12e  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =/=  .0.  )

Proof of Theorem cdlemg12e
StepHypRef Expression
1 simp33 993 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( R `  F )  =/=  ( R `  G
) )
2 simpl1 958 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
3 simpl21 1033 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  F  e.  T )
4 simpl22 1034 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  G  e.  T )
5 simpl23 1035 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  P  =/=  Q )
6 simpl31 1036 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  -.  ( R `  F )  .<_  ( P  .\/  Q
) )
7 simpl32 1037 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  -.  ( R `  G )  .<_  ( P  .\/  Q
) )
8 cdlemg12.l . . . . . . . . 9  |-  .<_  =  ( le `  K )
9 cdlemg12.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
10 cdlemg12.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
11 cdlemg12.a . . . . . . . . 9  |-  A  =  ( Atoms `  K )
12 cdlemg12.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
13 cdlemg12.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
14 cdlemg12b.r . . . . . . . . 9  |-  R  =  ( ( trL `  K
) `  W )
158, 9, 10, 11, 12, 13, 14cdlemg12d 30835 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T
)  /\  ( P  =/=  Q  /\  -.  ( R `  F )  .<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
) ) )  -> 
( R `  G
)  .<_  ( ( R `
 F )  .\/  ( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
162, 3, 4, 5, 6, 7, 15syl123anc 1199 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  .<_  ( ( R `  F ) 
.\/  ( ( ( F `  ( G `
 P ) ) 
.\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) ) )
17 simpr 447 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( (
( F `  ( G `  P )
)  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) )  =  .0.  )
1817oveq2d 5874 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  F )  .\/  ( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) )  =  ( ( R `  F )  .\/  .0.  ) )
19 simp11l 1066 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  K  e.  HL )
2019adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  K  e.  HL )
21 hlol 29551 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OL )
2220, 21syl 15 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  K  e.  OL )
23 simpl11 1030 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( K  e.  HL  /\  W  e.  H ) )
24 eqid 2283 . . . . . . . . . . 11  |-  ( Base `  K )  =  (
Base `  K )
2524, 12, 13, 14trlcl 30353 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
2623, 3, 25syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  F )  e.  (
Base `  K )
)
27 cdlemg12e.z . . . . . . . . . 10  |-  .0.  =  ( 0. `  K )
2824, 9, 27olj01 29415 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( R `  F )  e.  ( Base `  K
) )  ->  (
( R `  F
)  .\/  .0.  )  =  ( R `  F ) )
2922, 26, 28syl2anc 642 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  F )  .\/  .0.  )  =  ( R `  F ) )
3018, 29eqtrd 2315 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  F )  .\/  ( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) ) )  =  ( R `  F
) )
3116, 30breqtrd 4047 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  .<_  ( R `
 F ) )
32 hlatl 29550 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  AtLat )
3320, 32syl 15 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  K  e.  AtLat
)
34 hlop 29552 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OP )
3520, 34syl 15 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  K  e.  OP )
3624, 12, 13, 14trlcl 30353 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
3723, 4, 36syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  e.  (
Base `  K )
)
38 simp12l 1068 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  P  e.  A )
3938adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  P  e.  A )
40 simp13l 1070 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  Q  e.  A )
4140adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  Q  e.  A )
4224, 9, 11hlatjcl 29556 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
4320, 39, 41, 42syl3anc 1182 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( P  .\/  Q )  e.  (
Base `  K )
)
4424, 8, 27opnlen0 29378 . . . . . . . . 9  |-  ( ( ( K  e.  OP  /\  ( R `  G
)  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  /\  -.  ( R `  G ) 
.<_  ( P  .\/  Q
) )  ->  ( R `  G )  =/=  .0.  )
4535, 37, 43, 7, 44syl31anc 1185 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  =/=  .0.  )
46 simp11r 1067 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  W  e.  H )
4746adantr 451 . . . . . . . . 9  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  W  e.  H )
4827, 11, 12, 13, 14trlatn0 30361 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( ( R `  G )  e.  A  <->  ( R `  G )  =/=  .0.  ) )
4920, 47, 4, 48syl21anc 1181 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  G )  e.  A  <->  ( R `  G )  =/=  .0.  ) )
5045, 49mpbird 223 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  e.  A
)
5124, 8, 27opnlen0 29378 . . . . . . . . 9  |-  ( ( ( K  e.  OP  /\  ( R `  F
)  e.  ( Base `  K )  /\  ( P  .\/  Q )  e.  ( Base `  K
) )  /\  -.  ( R `  F ) 
.<_  ( P  .\/  Q
) )  ->  ( R `  F )  =/=  .0.  )
5235, 26, 43, 6, 51syl31anc 1185 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  F )  =/=  .0.  )
5327, 11, 12, 13, 14trlatn0 30361 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( R `  F )  e.  A  <->  ( R `  F )  =/=  .0.  ) )
5420, 47, 3, 53syl21anc 1181 . . . . . . . 8  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  F )  e.  A  <->  ( R `  F )  =/=  .0.  ) )
5552, 54mpbird 223 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  F )  e.  A
)
568, 11atcmp 29501 . . . . . . 7  |-  ( ( K  e.  AtLat  /\  ( R `  G )  e.  A  /\  ( R `  F )  e.  A )  ->  (
( R `  G
)  .<_  ( R `  F )  <->  ( R `  G )  =  ( R `  F ) ) )
5733, 50, 55, 56syl3anc 1182 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( ( R `  G )  .<_  ( R `  F
)  <->  ( R `  G )  =  ( R `  F ) ) )
5831, 57mpbid 201 . . . . 5  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  G )  =  ( R `  F ) )
5958eqcomd 2288 . . . 4  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =  .0.  )  ->  ( R `  F )  =  ( R `  G ) )
6059ex 423 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) )  =  .0. 
->  ( R `  F
)  =  ( R `
 G ) ) )
6160necon3d 2484 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( R `  F
)  =/=  ( R `
 G )  -> 
( ( ( F `
 ( G `  P ) )  .\/  P )  ./\  ( ( F `  ( G `  Q ) )  .\/  Q ) )  =/=  .0.  ) )
621, 61mpd 14 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  P  =/=  Q
)  /\  ( -.  ( R `  F ) 
.<_  ( P  .\/  Q
)  /\  -.  ( R `  G )  .<_  ( P  .\/  Q
)  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  (
( ( F `  ( G `  P ) )  .\/  P ) 
./\  ( ( F `
 ( G `  Q ) )  .\/  Q ) )  =/=  .0.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   0.cp0 14143   OPcops 29362   OLcol 29364   Atomscatm 29453   AtLatcal 29454   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347
This theorem is referenced by:  cdlemg12g  30838
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348
  Copyright terms: Public domain W3C validator