Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg16 Unicode version

Theorem cdlemg16 30822
 Description: Part of proof of Lemma G of [Crawley] p. 116; 2nd line p. 117, which says that (our) cdlemg10 30806 "implies (2)" (of p. 116). No details are provided by the authors, so there may be a shorter proof; but ours requires the 14 lemmas, one using Desargues' law dalaw 30051, in order to make this inference. This final step eliminates the condition from cdlemg12 30815. TODO: FIX COMMENT TODO: should we also eliminate here (or earlier)? Do it if we don't need to add it in for something else later. (Contributed by NM, 6-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l
cdlemg12.j
cdlemg12.m
cdlemg12.a
cdlemg12.h
cdlemg12.t
cdlemg12b.r
Assertion
Ref Expression
cdlemg16

Proof of Theorem cdlemg16
StepHypRef Expression
1 simpl1 960 . . 3
2 simpl21 1035 . . 3
3 simpl22 1036 . . 3
4 simpr 448 . . 3
5 cdlemg12.l . . . 4
6 cdlemg12.j . . . 4
7 cdlemg12.m . . . 4
8 cdlemg12.a . . . 4
9 cdlemg12.h . . . 4
10 cdlemg12.t . . . 4
11 cdlemg12b.r . . . 4
125, 6, 7, 8, 9, 10, 11cdlemg15 30821 . . 3
131, 2, 3, 4, 12syl121anc 1189 . 2
14 simpl1 960 . . 3
15 simpl2 961 . . 3
16 simpl31 1038 . . . 4
17 simpl32 1039 . . . 4
1816, 17jca 519 . . 3
19 simpr 448 . . 3
20 simpl33 1040 . . 3
215, 6, 7, 8, 9, 10, 11cdlemg12 30815 . . 3
2214, 15, 18, 19, 20, 21syl113anc 1196 . 2
2313, 22pm2.61dane 2621 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 359   w3a 936   wceq 1649   wcel 1717   wne 2543   class class class wbr 4146  cfv 5387  (class class class)co 6013  cple 13456  cjn 14321  cmee 14322  catm 29429  chlt 29516  clh 30149  cltrn 30266  ctrl 30323 This theorem is referenced by:  cdlemg16z  30824 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-op 3759  df-uni 3951  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-id 4432  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-undef 6472  df-riota 6478  df-map 6949  df-poset 14323  df-plt 14335  df-lub 14351  df-glb 14352  df-join 14353  df-meet 14354  df-p0 14388  df-p1 14389  df-lat 14395  df-clat 14457  df-oposet 29342  df-ol 29344  df-oml 29345  df-covers 29432  df-ats 29433  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-llines 29663  df-lplanes 29664  df-lvols 29665  df-lines 29666  df-psubsp 29668  df-pmap 29669  df-padd 29961  df-lhyp 30153  df-laut 30154  df-ldil 30269  df-ltrn 30270  df-trl 30324
 Copyright terms: Public domain W3C validator