Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg21 Structured version   Unicode version

Theorem cdlemg21 31556
Description: Version of cdlemg19 with  ( R `  F )  .<_  ( P 
.\/  Q ) instead of  ( R `  G )  .<_  ( P 
.\/  Q ) as a condition. (Contributed by NM, 23-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg21  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
Distinct variable groups:    A, r    G, r    .\/ , r    .<_ , r    P, r    Q, r    W, r    F, r
Allowed substitution hints:    R( r)    T( r)    H( r)    K( r)    ./\ ( r)

Proof of Theorem cdlemg21
StepHypRef Expression
1 simp1 958 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simp21r 1076 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  G  e.  T )
3 simp21l 1075 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  F  e.  T )
42, 3jca 520 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( G  e.  T  /\  F  e.  T
) )
5 simp22 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  P  =/=  Q )
6 simp23 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( F `  P
)  =/=  P )
7 simp31 994 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( R `  F
)  .<_  ( P  .\/  Q ) )
8 simp33 996 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) )
9 cdlemg12.l . . . . . . 7  |-  .<_  =  ( le `  K )
10 cdlemg12.j . . . . . . 7  |-  .\/  =  ( join `  K )
11 cdlemg12.m . . . . . . 7  |-  ./\  =  ( meet `  K )
12 cdlemg12.a . . . . . . 7  |-  A  =  ( Atoms `  K )
13 cdlemg12.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
14 cdlemg12.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
15 cdlemg12b.r . . . . . . 7  |-  R  =  ( ( trL `  K
) `  W )
169, 10, 11, 12, 13, 14, 15cdlemg17j 31541 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( G  e.  T  /\  F  e.  T  /\  P  =/=  Q
)  /\  ( ( F `  P )  =/=  P  /\  ( R `
 F )  .<_  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( F `  ( G `  P ) )  =  ( G `
 ( F `  P ) ) )
171, 2, 3, 5, 6, 7, 8, 16syl133anc 1208 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( F `  ( G `  P )
)  =  ( G `
 ( F `  P ) ) )
18 simp11 988 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
19 simp13 990 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
20 simp12 989 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
215necomd 2689 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  Q  =/=  P )
229, 12, 13, 14ltrnatneq 31052 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( F `  Q )  =/=  Q )
2318, 3, 20, 19, 6, 22syl131anc 1198 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( F `  Q
)  =/=  Q )
24 simp11l 1069 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  K  e.  HL )
25 simp12l 1071 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  P  e.  A )
26 simp13l 1073 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  Q  e.  A )
2710, 12hlatjcom 30238 . . . . . . . 8  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
2824, 25, 26, 27syl3anc 1185 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( P  .\/  Q
)  =  ( Q 
.\/  P ) )
297, 28breqtrd 4239 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( R `  F
)  .<_  ( Q  .\/  P ) )
30 eqcom 2440 . . . . . . . . 9  |-  ( ( P  .\/  r )  =  ( Q  .\/  r )  <->  ( Q  .\/  r )  =  ( P  .\/  r ) )
3130anbi2i 677 . . . . . . . 8  |-  ( ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  ( -.  r  .<_  W  /\  ( Q  .\/  r )  =  ( P  .\/  r
) ) )
3231rexbii 2732 . . . . . . 7  |-  ( E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) )  <->  E. r  e.  A  ( -.  r  .<_  W  /\  ( Q  .\/  r )  =  ( P  .\/  r
) ) )
338, 32sylnib 297 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  ->  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( Q  .\/  r )  =  ( P  .\/  r ) ) )
349, 10, 11, 12, 13, 14, 15cdlemg17j 31541 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( G  e.  T  /\  F  e.  T  /\  Q  =/=  P
)  /\  ( ( F `  Q )  =/=  Q  /\  ( R `
 F )  .<_  ( Q  .\/  P )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( Q  .\/  r )  =  ( P  .\/  r
) ) ) )  ->  ( F `  ( G `  Q ) )  =  ( G `
 ( F `  Q ) ) )
3518, 19, 20, 2, 3, 21, 23, 29, 33, 34syl333anc 1217 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( F `  ( G `  Q )
)  =  ( G `
 ( F `  Q ) ) )
3617, 35oveq12d 6102 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( ( G `
 ( F `  P ) )  .\/  ( G `  ( F `
 Q ) ) ) )
37 simp32 995 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =/=  ( P  .\/  Q ) )
3836, 37eqnetrrd 2623 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( G `  ( F `  P ) )  .\/  ( G `
 ( F `  Q ) ) )  =/=  ( P  .\/  Q ) )
399, 10, 11, 12, 13, 14, 15cdlemg19 31554 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( G  e.  T  /\  F  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( G `  ( F `
 P ) ) 
.\/  ( G `  ( F `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( P  .\/  ( G `  ( F `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( G `  ( F `  Q ) ) )  ./\  W
) )
401, 4, 5, 6, 7, 38, 8, 39syl133anc 1208 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( P  .\/  ( G `  ( F `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( G `  ( F `  Q ) ) )  ./\  W
) )
4117oveq2d 6100 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( P  .\/  ( F `  ( G `  P ) ) )  =  ( P  .\/  ( G `  ( F `
 P ) ) ) )
4241oveq1d 6099 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( P 
.\/  ( G `  ( F `  P ) ) )  ./\  W
) )
4335oveq2d 6100 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( Q  .\/  ( F `  ( G `  Q ) ) )  =  ( Q  .\/  ( G `  ( F `
 Q ) ) ) )
4443oveq1d 6099 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )  =  ( ( Q 
.\/  ( G `  ( F `  Q ) ) )  ./\  W
) )
4540, 42, 443eqtr4d 2480 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( F  e.  T  /\  G  e.  T )  /\  P  =/=  Q  /\  ( F `
 P )  =/= 
P )  /\  (
( R `  F
)  .<_  ( P  .\/  Q )  /\  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) )  =/=  ( P  .\/  Q )  /\  -.  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r ) ) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   class class class wbr 4215   ` cfv 5457  (class class class)co 6084   lecple 13541   joincjn 14406   meetcmee 14407   Atomscatm 30134   HLchlt 30221   LHypclh 30854   LTrncltrn 30971   trLctrl 31028
This theorem is referenced by:  cdlemg22  31557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-undef 6546  df-riota 6552  df-map 7023  df-poset 14408  df-plt 14420  df-lub 14436  df-glb 14437  df-join 14438  df-meet 14439  df-p0 14473  df-p1 14474  df-lat 14480  df-clat 14542  df-oposet 30047  df-ol 30049  df-oml 30050  df-covers 30137  df-ats 30138  df-atl 30169  df-cvlat 30193  df-hlat 30222  df-llines 30368  df-lplanes 30369  df-lvols 30370  df-lines 30371  df-psubsp 30373  df-pmap 30374  df-padd 30666  df-lhyp 30858  df-laut 30859  df-ldil 30974  df-ltrn 30975  df-trl 31029
  Copyright terms: Public domain W3C validator