Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg28 Unicode version

Theorem cdlemg28 30893
Description: Part of proof of Lemma G of [Crawley] p. 116. Chain the equalities of line 14 on p. 117. TODO: rearrange hypotheses in the order of cdlemg29 30894 (and maybe leading up to this too)? (Contributed by NM, 29-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
cdlemg33.o  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
Assertion
Ref Expression
cdlemg28  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
Distinct variable groups:    z, A    z, F    z, H    z,  .\/    z, K    z,  .<_    z, N    z, P    z, Q    z, R    z, T    z, W    z, v    z, G   
z, O
Allowed substitution hints:    A( v)    P( v)    Q( v)    R( v)    T( v)    F( v)    G( v)    H( v)    .\/ ( v)    K( v)   
.<_ ( v)    ./\ ( z, v)    N( v)    O( v)    W( v)

Proof of Theorem cdlemg28
StepHypRef Expression
1 simp11 985 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp12 986 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp21 988 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( v  e.  A  /\  v  .<_  W ) )
4 simp22 989 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( z  e.  A  /\  -.  z  .<_  W ) )
5 simp23l 1076 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  F  e.  T
)
6 simp23r 1077 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  G  e.  T
)
7 simp32 992 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) )
8 simp313 1104 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  z  .<_  ( P 
.\/  v ) )
9 simp33 993 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) )
10 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
11 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
12 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
13 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
14 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
15 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
16 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
1710, 11, 12, 13, 14, 15, 16cdlemg28a 30882 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( ( z  e.  A  /\  -.  z  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
)  /\  z  .<_  ( P  .\/  v )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P
) ) )  -> 
( ( P  .\/  ( F `  ( G `
 P ) ) )  ./\  W )  =  ( ( z 
.\/  ( F `  ( G `  z ) ) )  ./\  W
) )
181, 2, 3, 4, 5, 6, 7, 8, 9, 17syl333anc 1214 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( z  .\/  ( F `
 ( G `  z ) ) ) 
./\  W ) )
19 cdlemg31.n . . 3  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
20 cdlemg33.o . . 3  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
2110, 11, 12, 13, 14, 15, 16, 19, 20cdlemg28b 30892 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( Q 
.\/  ( F `  ( G `  Q ) ) )  ./\  W
)  =  ( ( z  .\/  ( F `
 ( G `  z ) ) ) 
./\  W ) )
2218, 21eqtr4d 2318 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  (
z  e.  A  /\  -.  z  .<_  W )  /\  ( F  e.  T  /\  G  e.  T ) )  /\  ( ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) )  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P )  =/=  P ) ) )  ->  ( ( P 
.\/  ( F `  ( G `  P ) ) )  ./\  W
)  =  ( ( Q  .\/  ( F `
 ( G `  Q ) ) ) 
./\  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   meetcmee 14079   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347
This theorem is referenced by:  cdlemg29  30894
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348
  Copyright terms: Public domain W3C validator