Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2fv Structured version   Unicode version

Theorem cdlemg2fv 31458
Description: Value of a translation in terms of an associated atom. cdleme48fvg 31359 with simpler hypotheses. TODO: Use ltrnj 30991 to vastly simplify. (Contributed by NM, 23-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2inv.h  |-  H  =  ( LHyp `  K
)
cdlemg2inv.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg2j.l  |-  .<_  =  ( le `  K )
cdlemg2j.j  |-  .\/  =  ( join `  K )
cdlemg2j.a  |-  A  =  ( Atoms `  K )
cdlemg2j.m  |-  ./\  =  ( meet `  K )
cdlemg2j.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdlemg2fv  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( F  e.  T  /\  ( P  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( F `  X )  =  ( ( F `
 P )  .\/  ( X  ./\  W ) ) )

Proof of Theorem cdlemg2fv
Dummy variables  q  p  s  t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdlemg2j.b . 2  |-  B  =  ( Base `  K
)
2 cdlemg2j.l . 2  |-  .<_  =  ( le `  K )
3 cdlemg2j.j . 2  |-  .\/  =  ( join `  K )
4 cdlemg2j.m . 2  |-  ./\  =  ( meet `  K )
5 cdlemg2j.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemg2inv.h . 2  |-  H  =  ( LHyp `  K
)
7 cdlemg2inv.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
8 eqid 2438 . 2  |-  ( ( p  .\/  q ) 
./\  W )  =  ( ( p  .\/  q )  ./\  W
)
9 eqid 2438 . 2  |-  ( ( t  .\/  ( ( p  .\/  q ) 
./\  W ) ) 
./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )  =  ( ( t  .\/  ( ( p  .\/  q )  ./\  W
) )  ./\  (
q  .\/  ( (
p  .\/  t )  ./\  W ) ) )
10 eqid 2438 . 2  |-  ( ( p  .\/  q ) 
./\  ( ( ( t  .\/  ( ( p  .\/  q ) 
./\  W ) ) 
./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )  .\/  ( ( s  .\/  t )  ./\  W
) ) )  =  ( ( p  .\/  q )  ./\  (
( ( t  .\/  ( ( p  .\/  q )  ./\  W
) )  ./\  (
q  .\/  ( (
p  .\/  t )  ./\  W ) ) ) 
.\/  ( ( s 
.\/  t )  ./\  W ) ) )
11 eqid 2438 . 2  |-  ( x  e.  B  |->  if ( ( p  =/=  q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  (
x  ./\  W )
)  =  x )  ->  z  =  ( if ( s  .<_  ( p  .\/  q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p 
.\/  q ) )  ->  y  =  ( ( p  .\/  q
)  ./\  ( (
( t  .\/  (
( p  .\/  q
)  ./\  W )
)  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )  .\/  ( ( s  .\/  t )  ./\  W
) ) ) ) ) ,  [_ s  /  t ]_ (
( t  .\/  (
( p  .\/  q
)  ./\  W )
)  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) ) ) 
.\/  ( x  ./\  W ) ) ) ) ,  x ) )  =  ( x  e.  B  |->  if ( ( p  =/=  q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  (
x  ./\  W )
)  =  x )  ->  z  =  ( if ( s  .<_  ( p  .\/  q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p 
.\/  q ) )  ->  y  =  ( ( p  .\/  q
)  ./\  ( (
( t  .\/  (
( p  .\/  q
)  ./\  W )
)  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )  .\/  ( ( s  .\/  t )  ./\  W
) ) ) ) ) ,  [_ s  /  t ]_ (
( t  .\/  (
( p  .\/  q
)  ./\  W )
)  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) ) ) 
.\/  ( x  ./\  W ) ) ) ) ,  x ) )
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11cdlemg2fvlem 31453 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( F  e.  T  /\  ( P  .\/  ( X  ./\  W ) )  =  X ) )  ->  ( F `  X )  =  ( ( F `
 P )  .\/  ( X  ./\  W ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   [_csb 3253   ifcif 3741   class class class wbr 4214    e. cmpt 4268   ` cfv 5456  (class class class)co 6083   iota_crio 6544   Basecbs 13471   lecple 13538   joincjn 14403   meetcmee 14404   Atomscatm 30123   HLchlt 30210   LHypclh 30843   LTrncltrn 30960
This theorem is referenced by:  cdlemg2fv2  31459  cdlemg7fvbwN  31466  cdlemg7fvN  31483
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-map 7022  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-clat 14539  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211  df-llines 30357  df-lplanes 30358  df-lvols 30359  df-lines 30360  df-psubsp 30362  df-pmap 30363  df-padd 30655  df-lhyp 30847  df-laut 30848  df-ldil 30963  df-ltrn 30964  df-trl 31018
  Copyright terms: Public domain W3C validator