Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2jlemOLDN Structured version   Unicode version

Theorem cdlemg2jlemOLDN 31391
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT . f preserves join: f(r  \/ s) = f(r)  \/ s, p. 115 10th line from bottom. TODO: Combine with cdlemg2jOLDN 31396? (Contributed by NM, 22-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg2.b  |-  B  =  ( Base `  K
)
cdlemg2.l  |-  .<_  =  ( le `  K )
cdlemg2.j  |-  .\/  =  ( join `  K )
cdlemg2.m  |-  ./\  =  ( meet `  K )
cdlemg2.a  |-  A  =  ( Atoms `  K )
cdlemg2.h  |-  H  =  ( LHyp `  K
)
cdlemg2.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg2ex.u  |-  U  =  ( ( p  .\/  q )  ./\  W
)
cdlemg2ex.d  |-  D  =  ( ( t  .\/  U )  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )
cdlemg2ex.e  |-  E  =  ( ( p  .\/  q )  ./\  ( D  .\/  ( ( s 
.\/  t )  ./\  W ) ) )
cdlemg2ex.g  |-  G  =  ( x  e.  B  |->  if ( ( p  =/=  q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( p  .\/  q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p 
.\/  q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
Assertion
Ref Expression
cdlemg2jlemOLDN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( F `  ( P  .\/  Q ) )  =  ( ( F `  P )  .\/  ( F `  Q )
) )
Distinct variable groups:    t, s, x, y, z, A    B, s, t, x, y, z    D, s, x, y, z   
x, E, y, z    H, s, t, x, y, z    .\/ , s, t, x, y, z    K, s, t, x, y, z    .<_ , s, t, x, y, z    ./\ , s, t, x, y, z    P, s, t, x, y, z    Q, s, t, x, y, z    U, s, t, x, y, z    W, s, t, x, y, z   
q, p, A    F, p, q    H, p, q    K, p, q    .<_ , p, q    T, p, q    W, p, q, s, t, x, y, z    .\/ , p, q    P, p, q    Q, p, q
Allowed substitution hints:    B( q, p)    D( t, q, p)    T( x, y, z, t, s)    U( q, p)    E( t,
s, q, p)    F( x, y, z, t, s)    G( x, y, z, t, s, q, p)    ./\ ( q, p)

Proof of Theorem cdlemg2jlemOLDN
StepHypRef Expression
1 cdlemg2.b . . 3  |-  B  =  ( Base `  K
)
2 cdlemg2.l . . 3  |-  .<_  =  ( le `  K )
3 cdlemg2.j . . 3  |-  .\/  =  ( join `  K )
4 cdlemg2.m . . 3  |-  ./\  =  ( meet `  K )
5 cdlemg2.a . . 3  |-  A  =  ( Atoms `  K )
6 cdlemg2.h . . 3  |-  H  =  ( LHyp `  K
)
7 cdlemg2.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
8 cdlemg2ex.u . . 3  |-  U  =  ( ( p  .\/  q )  ./\  W
)
9 cdlemg2ex.d . . 3  |-  D  =  ( ( t  .\/  U )  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )
10 cdlemg2ex.e . . 3  |-  E  =  ( ( p  .\/  q )  ./\  ( D  .\/  ( ( s 
.\/  t )  ./\  W ) ) )
11 cdlemg2ex.g . . 3  |-  G  =  ( x  e.  B  |->  if ( ( p  =/=  q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( if ( s  .<_  ( p  .\/  q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p 
.\/  q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) ) ,  x ) )
12 fveq1 5728 . . . 4  |-  ( F  =  G  ->  ( F `  ( P  .\/  Q ) )  =  ( G `  ( P  .\/  Q ) ) )
13 fveq1 5728 . . . . 5  |-  ( F  =  G  ->  ( F `  P )  =  ( G `  P ) )
14 fveq1 5728 . . . . 5  |-  ( F  =  G  ->  ( F `  Q )  =  ( G `  Q ) )
1513, 14oveq12d 6100 . . . 4  |-  ( F  =  G  ->  (
( F `  P
)  .\/  ( F `  Q ) )  =  ( ( G `  P )  .\/  ( G `  Q )
) )
1612, 15eqeq12d 2451 . . 3  |-  ( F  =  G  ->  (
( F `  ( P  .\/  Q ) )  =  ( ( F `
 P )  .\/  ( F `  Q ) )  <->  ( G `  ( P  .\/  Q ) )  =  ( ( G `  P ) 
.\/  ( G `  Q ) ) ) )
17 vex 2960 . . . . 5  |-  s  e. 
_V
18 eqid 2437 . . . . . 6  |-  ( ( s  .\/  U ) 
./\  ( q  .\/  ( ( p  .\/  s )  ./\  W
) ) )  =  ( ( s  .\/  U )  ./\  ( q  .\/  ( ( p  .\/  s )  ./\  W
) ) )
199, 18cdleme31sc 31182 . . . . 5  |-  ( s  e.  _V  ->  [_ s  /  t ]_ D  =  ( ( s 
.\/  U )  ./\  ( q  .\/  (
( p  .\/  s
)  ./\  W )
) ) )
2017, 19ax-mp 8 . . . 4  |-  [_ s  /  t ]_ D  =  ( ( s 
.\/  U )  ./\  ( q  .\/  (
( p  .\/  s
)  ./\  W )
) )
21 eqid 2437 . . . 4  |-  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p 
.\/  q ) )  ->  y  =  E ) )  =  (
iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p  .\/  q
) )  ->  y  =  E ) )
22 eqid 2437 . . . 4  |-  if ( s  .<_  ( p  .\/  q ) ,  (
iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p  .\/  q
) )  ->  y  =  E ) ) , 
[_ s  /  t ]_ D )  =  if ( s  .<_  ( p 
.\/  q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p  .\/  q
) )  ->  y  =  E ) ) , 
[_ s  /  t ]_ D )
23 eqid 2437 . . . 4  |-  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  (
x  ./\  W )
)  =  x )  ->  z  =  ( if ( s  .<_  ( p  .\/  q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p 
.\/  q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) )  =  ( iota_ z  e.  B A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  (
x  ./\  W )
)  =  x )  ->  z  =  ( if ( s  .<_  ( p  .\/  q ) ,  ( iota_ y  e.  B A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p 
.\/  q ) )  ->  y  =  E ) ) ,  [_ s  /  t ]_ D
)  .\/  ( x  ./\ 
W ) ) ) )
241, 2, 3, 4, 5, 6, 8, 20, 9, 10, 21, 22, 23, 11cdleme42mgN 31286 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
p  e.  A  /\  -.  p  .<_  W )  /\  ( q  e.  A  /\  -.  q  .<_  W ) )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( G `  ( P  .\/  Q ) )  =  ( ( G `  P )  .\/  ( G `  Q )
) )
251, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 24cdlemg2ce 31390 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )  ->  ( F `  ( P  .\/  Q ) )  =  ( ( F `  P )  .\/  ( F `  Q )
) )
26253com23 1160 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  ( F `  ( P  .\/  Q ) )  =  ( ( F `  P )  .\/  ( F `  Q )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2600   A.wral 2706   _Vcvv 2957   [_csb 3252   ifcif 3740   class class class wbr 4213    e. cmpt 4267   ` cfv 5455  (class class class)co 6082   iota_crio 6543   Basecbs 13470   lecple 13537   joincjn 14402   meetcmee 14403   Atomscatm 30062   HLchlt 30149   LHypclh 30782   LTrncltrn 30899
This theorem is referenced by:  cdlemg2jOLDN  31396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-undef 6544  df-riota 6550  df-map 7021  df-poset 14404  df-plt 14416  df-lub 14432  df-glb 14433  df-join 14434  df-meet 14435  df-p0 14469  df-p1 14470  df-lat 14476  df-clat 14538  df-oposet 29975  df-ol 29977  df-oml 29978  df-covers 30065  df-ats 30066  df-atl 30097  df-cvlat 30121  df-hlat 30150  df-llines 30296  df-lplanes 30297  df-lvols 30298  df-lines 30299  df-psubsp 30301  df-pmap 30302  df-padd 30594  df-lhyp 30786  df-laut 30787  df-ldil 30902  df-ltrn 30903  df-trl 30957
  Copyright terms: Public domain W3C validator