Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg2k Structured version   Unicode version

Theorem cdlemg2k 31398
Description: cdleme42keg 31283 with simpler hypotheses. TODO: FIX COMMENT Todo: derive from cdlemg3a 31394, cdlemg2fv2 31397, cdlemg2jOLDN 31395, ltrnel 30936? (Contributed by NM, 22-Apr-2013.)
Hypotheses
Ref Expression
cdlemg2inv.h  |-  H  =  ( LHyp `  K
)
cdlemg2inv.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg2j.l  |-  .<_  =  ( le `  K )
cdlemg2j.j  |-  .\/  =  ( join `  K )
cdlemg2j.a  |-  A  =  ( Atoms `  K )
cdlemg2j.m  |-  ./\  =  ( meet `  K )
cdlemg2j.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
Assertion
Ref Expression
cdlemg2k  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  P
)  .\/  ( F `  Q ) )  =  ( ( F `  P )  .\/  U
) )

Proof of Theorem cdlemg2k
Dummy variables  q  p  s  t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2436 . 2  |-  ( Base `  K )  =  (
Base `  K )
2 cdlemg2j.l . 2  |-  .<_  =  ( le `  K )
3 cdlemg2j.j . 2  |-  .\/  =  ( join `  K )
4 cdlemg2j.m . 2  |-  ./\  =  ( meet `  K )
5 cdlemg2j.a . 2  |-  A  =  ( Atoms `  K )
6 cdlemg2inv.h . 2  |-  H  =  ( LHyp `  K
)
7 cdlemg2inv.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
8 eqid 2436 . 2  |-  ( ( p  .\/  q ) 
./\  W )  =  ( ( p  .\/  q )  ./\  W
)
9 eqid 2436 . 2  |-  ( ( t  .\/  ( ( p  .\/  q ) 
./\  W ) ) 
./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )  =  ( ( t  .\/  ( ( p  .\/  q )  ./\  W
) )  ./\  (
q  .\/  ( (
p  .\/  t )  ./\  W ) ) )
10 eqid 2436 . 2  |-  ( ( p  .\/  q ) 
./\  ( ( ( t  .\/  ( ( p  .\/  q ) 
./\  W ) ) 
./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )  .\/  ( ( s  .\/  t )  ./\  W
) ) )  =  ( ( p  .\/  q )  ./\  (
( ( t  .\/  ( ( p  .\/  q )  ./\  W
) )  ./\  (
q  .\/  ( (
p  .\/  t )  ./\  W ) ) ) 
.\/  ( ( s 
.\/  t )  ./\  W ) ) )
11 eqid 2436 . 2  |-  ( x  e.  ( Base `  K
)  |->  if ( ( p  =/=  q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  (
x  ./\  W )
)  =  x )  ->  z  =  ( if ( s  .<_  ( p  .\/  q ) ,  ( iota_ y  e.  ( Base `  K
) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p 
.\/  q ) )  ->  y  =  ( ( p  .\/  q
)  ./\  ( (
( t  .\/  (
( p  .\/  q
)  ./\  W )
)  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )  .\/  ( ( s  .\/  t )  ./\  W
) ) ) ) ) ,  [_ s  /  t ]_ (
( t  .\/  (
( p  .\/  q
)  ./\  W )
)  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) ) ) 
.\/  ( x  ./\  W ) ) ) ) ,  x ) )  =  ( x  e.  ( Base `  K
)  |->  if ( ( p  =/=  q  /\  -.  x  .<_  W ) ,  ( iota_ z  e.  ( Base `  K
) A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  (
x  ./\  W )
)  =  x )  ->  z  =  ( if ( s  .<_  ( p  .\/  q ) ,  ( iota_ y  e.  ( Base `  K
) A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( p 
.\/  q ) )  ->  y  =  ( ( p  .\/  q
)  ./\  ( (
( t  .\/  (
( p  .\/  q
)  ./\  W )
)  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) )  .\/  ( ( s  .\/  t )  ./\  W
) ) ) ) ) ,  [_ s  /  t ]_ (
( t  .\/  (
( p  .\/  q
)  ./\  W )
)  ./\  ( q  .\/  ( ( p  .\/  t )  ./\  W
) ) ) ) 
.\/  ( x  ./\  W ) ) ) ) ,  x ) )
12 cdlemg2j.u . 2  |-  U  =  ( ( P  .\/  Q )  ./\  W )
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemg2klem 31392 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  F  e.  T )  ->  (
( F `  P
)  .\/  ( F `  Q ) )  =  ( ( F `  P )  .\/  U
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2599   A.wral 2705   [_csb 3251   ifcif 3739   class class class wbr 4212    e. cmpt 4266   ` cfv 5454  (class class class)co 6081   iota_crio 6542   Basecbs 13469   lecple 13536   joincjn 14401   meetcmee 14402   Atomscatm 30061   HLchlt 30148   LHypclh 30781   LTrncltrn 30898
This theorem is referenced by:  cdlemg2kq  31399  cdlemg2l  31400  cdlemg2m  31401  cdlemg9b  31430  cdlemg10bALTN  31433  cdlemg12b  31441  cdlemg17e  31462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-map 7020  df-poset 14403  df-plt 14415  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-p0 14468  df-p1 14469  df-lat 14475  df-clat 14537  df-oposet 29974  df-ol 29976  df-oml 29977  df-covers 30064  df-ats 30065  df-atl 30096  df-cvlat 30120  df-hlat 30149  df-llines 30295  df-lplanes 30296  df-lvols 30297  df-lines 30298  df-psubsp 30300  df-pmap 30301  df-padd 30593  df-lhyp 30785  df-laut 30786  df-ldil 30901  df-ltrn 30902  df-trl 30956
  Copyright terms: Public domain W3C validator