Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg31b0a Unicode version

Theorem cdlemg31b0a 30936
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
Assertion
Ref Expression
cdlemg31b0a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K ) ) )

Proof of Theorem cdlemg31b0a
StepHypRef Expression
1 simp1l 979 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  K  e.  HL )
2 simp21l 1072 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  P  e.  A )
3 simp23l 1076 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  v  e.  A )
4 simp22l 1074 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  Q  e.  A )
5 simp1 955 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simp3l 983 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  F  e.  T )
7 eqid 2358 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
8 cdlemg12.a . . . . 5  |-  A  =  ( Atoms `  K )
9 cdlemg12.h . . . . 5  |-  H  =  ( LHyp `  K
)
10 cdlemg12.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
11 cdlemg12b.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
127, 8, 9, 10, 11trlator0 30412 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( R `  F )  e.  A  \/  ( R `  F )  =  ( 0. `  K ) ) )
135, 6, 12syl2anc 642 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  (
( R `  F
)  e.  A  \/  ( R `  F )  =  ( 0. `  K ) ) )
14 simp22 989 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
15 cdlemg12.l . . . . . . . 8  |-  .<_  =  ( le `  K )
1615, 9, 10, 11trlle 30425 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
175, 6, 16syl2anc 642 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( R `  F )  .<_  W )
1813, 17jca 518 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  (
( ( R `  F )  e.  A  \/  ( R `  F
)  =  ( 0.
`  K ) )  /\  ( R `  F )  .<_  W ) )
19 simp23 990 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  (
v  e.  A  /\  v  .<_  W ) )
20 simp3r 984 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  v  =/=  ( R `  F
) )
2120necomd 2604 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( R `  F )  =/=  v )
22 cdlemg12.j . . . . . 6  |-  .\/  =  ( join `  K )
2315, 22, 7, 8, 9lhp2at0ne 30277 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  P  e.  A
)  /\  ( (
( ( R `  F )  e.  A  \/  ( R `  F
)  =  ( 0.
`  K ) )  /\  ( R `  F )  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( R `  F )  =/=  v )  -> 
( Q  .\/  ( R `  F )
)  =/=  ( P 
.\/  v ) )
245, 14, 2, 18, 19, 21, 23syl321anc 1204 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( Q  .\/  ( R `  F ) )  =/=  ( P  .\/  v
) )
2524necomd 2604 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( P  .\/  v )  =/=  ( Q  .\/  ( R `  F )
) )
26 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
2722, 26, 7, 82at0mat0 29766 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  v  e.  A )  /\  ( Q  e.  A  /\  ( ( R `  F )  e.  A  \/  ( R `  F
)  =  ( 0.
`  K ) )  /\  ( P  .\/  v )  =/=  ( Q  .\/  ( R `  F ) ) ) )  ->  ( (
( P  .\/  v
)  ./\  ( Q  .\/  ( R `  F
) ) )  e.  A  \/  ( ( P  .\/  v ) 
./\  ( Q  .\/  ( R `  F ) ) )  =  ( 0. `  K ) ) )
281, 2, 3, 4, 13, 25, 27syl33anc 1197 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  (
( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )  e.  A  \/  (
( P  .\/  v
)  ./\  ( Q  .\/  ( R `  F
) ) )  =  ( 0. `  K
) ) )
29 cdlemg31.n . . . 4  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
3029eleq1i 2421 . . 3  |-  ( N  e.  A  <->  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `
 F ) ) )  e.  A )
3129eqeq1i 2365 . . 3  |-  ( N  =  ( 0. `  K )  <->  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `
 F ) ) )  =  ( 0.
`  K ) )
3230, 31orbi12i 507 . 2  |-  ( ( N  e.  A  \/  N  =  ( 0. `  K ) )  <->  ( (
( P  .\/  v
)  ./\  ( Q  .\/  ( R `  F
) ) )  e.  A  \/  ( ( P  .\/  v ) 
./\  ( Q  .\/  ( R `  F ) ) )  =  ( 0. `  K ) ) )
3328, 32sylibr 203 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( v  e.  A  /\  v  .<_  W ) )  /\  ( F  e.  T  /\  v  =/=  ( R `  F )
) )  ->  ( N  e.  A  \/  N  =  ( 0. `  K ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   lecple 13306   joincjn 14171   meetcmee 14172   0.cp0 14236   Atomscatm 29505   HLchlt 29592   LHypclh 30225   LTrncltrn 30342   trLctrl 30399
This theorem is referenced by:  cdlemg27b  30937  cdlemg33  30952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-undef 6382  df-riota 6388  df-map 6859  df-poset 14173  df-plt 14185  df-lub 14201  df-glb 14202  df-join 14203  df-meet 14204  df-p0 14238  df-p1 14239  df-lat 14245  df-clat 14307  df-oposet 29418  df-ol 29420  df-oml 29421  df-covers 29508  df-ats 29509  df-atl 29540  df-cvlat 29564  df-hlat 29593  df-llines 29739  df-psubsp 29744  df-pmap 29745  df-padd 30037  df-lhyp 30229  df-laut 30230  df-ldil 30345  df-ltrn 30346  df-trl 30400
  Copyright terms: Public domain W3C validator