Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg33d Unicode version

Theorem cdlemg33d 30825
Description: TODO: Fix comment. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l  |-  .<_  =  ( le `  K )
cdlemg12.j  |-  .\/  =  ( join `  K )
cdlemg12.m  |-  ./\  =  ( meet `  K )
cdlemg12.a  |-  A  =  ( Atoms `  K )
cdlemg12.h  |-  H  =  ( LHyp `  K
)
cdlemg12.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg12b.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg31.n  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
cdlemg33.o  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
Assertion
Ref Expression
cdlemg33d  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
Distinct variable groups:    A, r    G, r    .\/ , r    .<_ , r    P, r    Q, r    W, r    F, r    z, A    z, F, r    H, r, z   
z,  .\/    K, r, z   
z,  .<_    N, r, z    z, P    z, Q    z, R    z, T    z, W    z,
v, r    z, G    z, O, r
Allowed substitution hints:    A( v)    P( v)    Q( v)    R( v, r)    T( v, r)    F( v)    G( v)    H( v)    .\/ ( v)    K( v)    .<_ ( v)    ./\ ( z,
v, r)    N( v)    O( v)    W( v)

Proof of Theorem cdlemg33d
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
2 simp21 990 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( v  e.  A  /\  v  .<_  W ) )
3 simp22r 1077 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  O  e.  A
)
4 simp22l 1076 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  N  =  ( 0. `  K ) )
53, 4jca 519 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( O  e.  A  /\  N  =  ( 0. `  K
) ) )
6 simp23r 1079 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  G  e.  T
)
7 simp23l 1078 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  F  e.  T
)
86, 7jca 519 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( G  e.  T  /\  F  e.  T ) )
9 simp3 959 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  ( P  =/= 
Q  /\  v  =/=  ( R `  G )  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P 
.\/  r )  =  ( Q  .\/  r
) ) ) )
10 cdlemg12.l . . . 4  |-  .<_  =  ( le `  K )
11 cdlemg12.j . . . 4  |-  .\/  =  ( join `  K )
12 cdlemg12.m . . . 4  |-  ./\  =  ( meet `  K )
13 cdlemg12.a . . . 4  |-  A  =  ( Atoms `  K )
14 cdlemg12.h . . . 4  |-  H  =  ( LHyp `  K
)
15 cdlemg12.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
16 cdlemg12b.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
17 cdlemg33.o . . . 4  |-  O  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  G ) ) )
18 cdlemg31.n . . . 4  |-  N  =  ( ( P  .\/  v )  ./\  ( Q  .\/  ( R `  F ) ) )
1910, 11, 12, 13, 14, 15, 16, 17, 18cdlemg33c 30824 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( O  e.  A  /\  N  =  ( 0. `  K ) )  /\  ( G  e.  T  /\  F  e.  T
) )  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
O  /\  z  =/=  N  /\  z  .<_  ( P 
.\/  v ) ) ) )
201, 2, 5, 8, 9, 19syl131anc 1197 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
O  /\  z  =/=  N  /\  z  .<_  ( P 
.\/  v ) ) ) )
21 3ancoma 943 . . . 4  |-  ( ( z  =/=  O  /\  z  =/=  N  /\  z  .<_  ( P  .\/  v
) )  <->  ( z  =/=  N  /\  z  =/= 
O  /\  z  .<_  ( P  .\/  v ) ) )
2221anbi2i 676 . . 3  |-  ( ( -.  z  .<_  W  /\  ( z  =/=  O  /\  z  =/=  N  /\  z  .<_  ( P 
.\/  v ) ) )  <->  ( -.  z  .<_  W  /\  ( z  =/=  N  /\  z  =/=  O  /\  z  .<_  ( P  .\/  v ) ) ) )
2322rexbii 2676 . 2  |-  ( E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/=  O  /\  z  =/=  N  /\  z  .<_  ( P 
.\/  v ) ) )  <->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
2420, 23sylib 189 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( v  e.  A  /\  v  .<_  W )  /\  ( N  =  ( 0. `  K )  /\  O  e.  A )  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( P  =/=  Q  /\  v  =/=  ( R `  G
)  /\  E. r  e.  A  ( -.  r  .<_  W  /\  ( P  .\/  r )  =  ( Q  .\/  r
) ) ) )  ->  E. z  e.  A  ( -.  z  .<_  W  /\  ( z  =/= 
N  /\  z  =/=  O  /\  z  .<_  ( P 
.\/  v ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   E.wrex 2652   class class class wbr 4155   ` cfv 5396  (class class class)co 6022   lecple 13465   joincjn 14330   meetcmee 14331   0.cp0 14395   Atomscatm 29380   HLchlt 29467   LHypclh 30100   LTrncltrn 30217   trLctrl 30274
This theorem is referenced by:  cdlemg33  30827
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-undef 6481  df-riota 6487  df-map 6958  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-p1 14398  df-lat 14404  df-clat 14466  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-llines 29614  df-lplanes 29615  df-psubsp 29619  df-pmap 29620  df-padd 29912  df-lhyp 30104  df-laut 30105  df-ldil 30220  df-ltrn 30221  df-trl 30275
  Copyright terms: Public domain W3C validator