Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg35 Unicode version

Theorem cdlemg35 30902
Description: TODO: Fix comment. TODO: should we have a more general version of hlsupr 29575 to avoid the  =/= conditions? (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
cdlemg35.l  |-  .<_  =  ( le `  K )
cdlemg35.j  |-  .\/  =  ( join `  K )
cdlemg35.m  |-  ./\  =  ( meet `  K )
cdlemg35.a  |-  A  =  ( Atoms `  K )
cdlemg35.h  |-  H  =  ( LHyp `  K
)
cdlemg35.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg35.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg35  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  E. v  e.  A  ( v  .<_  W  /\  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
) ) )
Distinct variable groups:    v, A    v, F    v, G    v, H    v, K    v,  .<_    v, P    v, R    v, T    v, W
Allowed substitution hints:    .\/ ( v)    ./\ ( v)

Proof of Theorem cdlemg35
StepHypRef Expression
1 simp1l 979 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  K  e.  HL )
2 simp1 955 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp21 988 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp22 989 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  F  e.  T
)
5 simp31 991 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( F `  P )  =/=  P
)
6 cdlemg35.l . . . . 5  |-  .<_  =  ( le `  K )
7 cdlemg35.a . . . . 5  |-  A  =  ( Atoms `  K )
8 cdlemg35.h . . . . 5  |-  H  =  ( LHyp `  K
)
9 cdlemg35.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdlemg35.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
116, 7, 8, 9, 10trlat 30358 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
122, 3, 4, 5, 11syl112anc 1186 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  F )  e.  A
)
13 simp23 990 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  G  e.  T
)
14 simp32 992 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( G `  P )  =/=  P
)
156, 7, 8, 9, 10trlat 30358 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G  e.  T  /\  ( G `  P )  =/=  P ) )  ->  ( R `  G )  e.  A
)
162, 3, 13, 14, 15syl112anc 1186 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  G )  e.  A
)
17 simp33 993 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
18 cdlemg35.j . . . 4  |-  .\/  =  ( join `  K )
196, 18, 7hlsupr 29575 . . 3  |-  ( ( ( K  e.  HL  /\  ( R `  F
)  e.  A  /\  ( R `  G )  e.  A )  /\  ( R `  F )  =/=  ( R `  G ) )  ->  E. v  e.  A  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) ) )
201, 12, 16, 17, 19syl31anc 1185 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  E. v  e.  A  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) ) )
21 eqid 2283 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
22 simp11l 1066 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  K  e.  HL )
23 hllat 29553 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
2422, 23syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  K  e.  Lat )
2521, 7atbase 29479 . . . . . . 7  |-  ( v  e.  A  ->  v  e.  ( Base `  K
) )
26253ad2ant2 977 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
v  e.  ( Base `  K ) )
27 simp11 985 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
28 simp122 1088 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  F  e.  T )
2921, 8, 9, 10trlcl 30353 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
3027, 28, 29syl2anc 642 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( R `  F
)  e.  ( Base `  K ) )
31 simp123 1089 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  G  e.  T )
3221, 8, 9, 10trlcl 30353 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
3327, 31, 32syl2anc 642 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( R `  G
)  e.  ( Base `  K ) )
3421, 18latjcl 14156 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( R `  F )  e.  ( Base `  K
)  /\  ( R `  G )  e.  (
Base `  K )
)  ->  ( ( R `  F )  .\/  ( R `  G
) )  e.  (
Base `  K )
)
3524, 30, 33, 34syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( ( R `  F )  .\/  ( R `  G )
)  e.  ( Base `  K ) )
36 simp11r 1067 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  W  e.  H )
3721, 8lhpbase 30187 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3836, 37syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  W  e.  ( Base `  K ) )
39 simp33 993 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
v  .<_  ( ( R `
 F )  .\/  ( R `  G ) ) )
406, 8, 9, 10trlle 30373 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
4127, 28, 40syl2anc 642 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( R `  F
)  .<_  W )
426, 8, 9, 10trlle 30373 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  .<_  W )
4327, 31, 42syl2anc 642 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( R `  G
)  .<_  W )
4421, 6, 18latjle12 14168 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( R `  F )  e.  (
Base `  K )  /\  ( R `  G
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( ( R `
 F )  .<_  W  /\  ( R `  G )  .<_  W )  <-> 
( ( R `  F )  .\/  ( R `  G )
)  .<_  W ) )
4524, 30, 33, 38, 44syl13anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( ( ( R `
 F )  .<_  W  /\  ( R `  G )  .<_  W )  <-> 
( ( R `  F )  .\/  ( R `  G )
)  .<_  W ) )
4641, 43, 45mpbi2and 887 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( ( R `  F )  .\/  ( R `  G )
)  .<_  W )
4721, 6, 24, 26, 35, 38, 39, 46lattrd 14164 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
v  .<_  W )
48 simp31 991 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
v  =/=  ( R `
 F ) )
49 simp32 992 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
v  =/=  ( R `
 G ) )
5047, 48, 49jca32 521 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( v  .<_  W  /\  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
) ) )
51503expia 1153 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A )  ->  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )  ->  ( v  .<_  W  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) ) )
5251reximdva 2655 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( E. v  e.  A  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )  ->  E. v  e.  A  ( v  .<_  W  /\  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
) ) ) )
5320, 52mpd 14 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  E. v  e.  A  ( v  .<_  W  /\  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347
This theorem is referenced by:  cdlemg36  30903
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348
  Copyright terms: Public domain W3C validator