Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg35 Structured version   Unicode version

Theorem cdlemg35 31447
 Description: TODO: Fix comment. TODO: should we have a more general version of hlsupr 30120 to avoid the conditions? (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
cdlemg35.l
cdlemg35.j
cdlemg35.m
cdlemg35.a
cdlemg35.h
cdlemg35.t
cdlemg35.r
Assertion
Ref Expression
cdlemg35
Distinct variable groups:   ,   ,   ,   ,   ,   ,   ,   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cdlemg35
StepHypRef Expression
1 simp1l 981 . . 3
2 simp1 957 . . . 4
3 simp21 990 . . . 4
4 simp22 991 . . . 4
5 simp31 993 . . . 4
6 cdlemg35.l . . . . 5
7 cdlemg35.a . . . . 5
8 cdlemg35.h . . . . 5
9 cdlemg35.t . . . . 5
10 cdlemg35.r . . . . 5
116, 7, 8, 9, 10trlat 30903 . . . 4
122, 3, 4, 5, 11syl112anc 1188 . . 3
13 simp23 992 . . . 4
14 simp32 994 . . . 4
156, 7, 8, 9, 10trlat 30903 . . . 4
162, 3, 13, 14, 15syl112anc 1188 . . 3
17 simp33 995 . . 3
18 cdlemg35.j . . . 4
196, 18, 7hlsupr 30120 . . 3
201, 12, 16, 17, 19syl31anc 1187 . 2
21 eqid 2435 . . . . . 6
22 simp11l 1068 . . . . . . 7
23 hllat 30098 . . . . . . 7
2422, 23syl 16 . . . . . 6
2521, 7atbase 30024 . . . . . . 7
26253ad2ant2 979 . . . . . 6
27 simp11 987 . . . . . . . 8
28 simp122 1090 . . . . . . . 8
2921, 8, 9, 10trlcl 30898 . . . . . . . 8
3027, 28, 29syl2anc 643 . . . . . . 7
31 simp123 1091 . . . . . . . 8
3221, 8, 9, 10trlcl 30898 . . . . . . . 8
3327, 31, 32syl2anc 643 . . . . . . 7
3421, 18latjcl 14471 . . . . . . 7
3524, 30, 33, 34syl3anc 1184 . . . . . 6
36 simp11r 1069 . . . . . . 7
3721, 8lhpbase 30732 . . . . . . 7
3836, 37syl 16 . . . . . 6
39 simp33 995 . . . . . 6
406, 8, 9, 10trlle 30918 . . . . . . . 8
4127, 28, 40syl2anc 643 . . . . . . 7
426, 8, 9, 10trlle 30918 . . . . . . . 8
4327, 31, 42syl2anc 643 . . . . . . 7
4421, 6, 18latjle12 14483 . . . . . . . 8
4524, 30, 33, 38, 44syl13anc 1186 . . . . . . 7
4641, 43, 45mpbi2and 888 . . . . . 6
4721, 6, 24, 26, 35, 38, 39, 46lattrd 14479 . . . . 5
48 simp31 993 . . . . 5
49 simp32 994 . . . . 5
5047, 48, 49jca32 522 . . . 4
51503expia 1155 . . 3
5251reximdva 2810 . 2
5320, 52mpd 15 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wa 359   w3a 936   wceq 1652   wcel 1725   wne 2598  wrex 2698   class class class wbr 4204  cfv 5446  (class class class)co 6073  cbs 13461  cple 13528  cjn 14393  cmee 14394  clat 14466  catm 29998  chlt 30085  clh 30718  cltrn 30835  ctrl 30892 This theorem is referenced by:  cdlemg36  31448 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-plt 14407  df-lub 14423  df-glb 14424  df-join 14425  df-meet 14426  df-p0 14460  df-p1 14461  df-lat 14467  df-clat 14529  df-oposet 29911  df-ol 29913  df-oml 29914  df-covers 30001  df-ats 30002  df-atl 30033  df-cvlat 30057  df-hlat 30086  df-lhyp 30722  df-laut 30723  df-ldil 30838  df-ltrn 30839  df-trl 30893
 Copyright terms: Public domain W3C validator