Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg35 Unicode version

Theorem cdlemg35 30827
Description: TODO: Fix comment. TODO: should we have a more general version of hlsupr 29500 to avoid the  =/= conditions? (Contributed by NM, 31-May-2013.)
Hypotheses
Ref Expression
cdlemg35.l  |-  .<_  =  ( le `  K )
cdlemg35.j  |-  .\/  =  ( join `  K )
cdlemg35.m  |-  ./\  =  ( meet `  K )
cdlemg35.a  |-  A  =  ( Atoms `  K )
cdlemg35.h  |-  H  =  ( LHyp `  K
)
cdlemg35.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg35.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg35  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  E. v  e.  A  ( v  .<_  W  /\  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
) ) )
Distinct variable groups:    v, A    v, F    v, G    v, H    v, K    v,  .<_    v, P    v, R    v, T    v, W
Allowed substitution hints:    .\/ ( v)    ./\ ( v)

Proof of Theorem cdlemg35
StepHypRef Expression
1 simp1l 981 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  K  e.  HL )
2 simp1 957 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
3 simp21 990 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp22 991 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  F  e.  T
)
5 simp31 993 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( F `  P )  =/=  P
)
6 cdlemg35.l . . . . 5  |-  .<_  =  ( le `  K )
7 cdlemg35.a . . . . 5  |-  A  =  ( Atoms `  K )
8 cdlemg35.h . . . . 5  |-  H  =  ( LHyp `  K
)
9 cdlemg35.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
10 cdlemg35.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
116, 7, 8, 9, 10trlat 30283 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
122, 3, 4, 5, 11syl112anc 1188 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  F )  e.  A
)
13 simp23 992 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  G  e.  T
)
14 simp32 994 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( G `  P )  =/=  P
)
156, 7, 8, 9, 10trlat 30283 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( G  e.  T  /\  ( G `  P )  =/=  P ) )  ->  ( R `  G )  e.  A
)
162, 3, 13, 14, 15syl112anc 1188 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  G )  e.  A
)
17 simp33 995 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
18 cdlemg35.j . . . 4  |-  .\/  =  ( join `  K )
196, 18, 7hlsupr 29500 . . 3  |-  ( ( ( K  e.  HL  /\  ( R `  F
)  e.  A  /\  ( R `  G )  e.  A )  /\  ( R `  F )  =/=  ( R `  G ) )  ->  E. v  e.  A  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) ) )
201, 12, 16, 17, 19syl31anc 1187 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  E. v  e.  A  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) ) )
21 eqid 2387 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
22 simp11l 1068 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  K  e.  HL )
23 hllat 29478 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
2422, 23syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  K  e.  Lat )
2521, 7atbase 29404 . . . . . . 7  |-  ( v  e.  A  ->  v  e.  ( Base `  K
) )
26253ad2ant2 979 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
v  e.  ( Base `  K ) )
27 simp11 987 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
28 simp122 1090 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  F  e.  T )
2921, 8, 9, 10trlcl 30278 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  e.  (
Base `  K )
)
3027, 28, 29syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( R `  F
)  e.  ( Base `  K ) )
31 simp123 1091 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  G  e.  T )
3221, 8, 9, 10trlcl 30278 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
3327, 31, 32syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( R `  G
)  e.  ( Base `  K ) )
3421, 18latjcl 14406 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( R `  F )  e.  ( Base `  K
)  /\  ( R `  G )  e.  (
Base `  K )
)  ->  ( ( R `  F )  .\/  ( R `  G
) )  e.  (
Base `  K )
)
3524, 30, 33, 34syl3anc 1184 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( ( R `  F )  .\/  ( R `  G )
)  e.  ( Base `  K ) )
36 simp11r 1069 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  W  e.  H )
3721, 8lhpbase 30112 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3836, 37syl 16 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  ->  W  e.  ( Base `  K ) )
39 simp33 995 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
v  .<_  ( ( R `
 F )  .\/  ( R `  G ) ) )
406, 8, 9, 10trlle 30298 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
4127, 28, 40syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( R `  F
)  .<_  W )
426, 8, 9, 10trlle 30298 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  .<_  W )
4327, 31, 42syl2anc 643 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( R `  G
)  .<_  W )
4421, 6, 18latjle12 14418 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( R `  F )  e.  (
Base `  K )  /\  ( R `  G
)  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( ( R `
 F )  .<_  W  /\  ( R `  G )  .<_  W )  <-> 
( ( R `  F )  .\/  ( R `  G )
)  .<_  W ) )
4524, 30, 33, 38, 44syl13anc 1186 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( ( ( R `
 F )  .<_  W  /\  ( R `  G )  .<_  W )  <-> 
( ( R `  F )  .\/  ( R `  G )
)  .<_  W ) )
4641, 43, 45mpbi2and 888 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( ( R `  F )  .\/  ( R `  G )
)  .<_  W )
4721, 6, 24, 26, 35, 38, 39, 46lattrd 14414 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
v  .<_  W )
48 simp31 993 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
v  =/=  ( R `
 F ) )
49 simp32 994 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
v  =/=  ( R `
 G ) )
5047, 48, 49jca32 522 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A  /\  (
v  =/=  ( R `
 F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F )  .\/  ( R `  G )
) ) )  -> 
( v  .<_  W  /\  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
) ) )
51503expia 1155 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T
)  /\  ( ( F `  P )  =/=  P  /\  ( G `
 P )  =/= 
P  /\  ( R `  F )  =/=  ( R `  G )
) )  /\  v  e.  A )  ->  (
( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )  ->  ( v  .<_  W  /\  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G ) ) ) ) )
5251reximdva 2761 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( E. v  e.  A  ( v  =/=  ( R `  F
)  /\  v  =/=  ( R `  G )  /\  v  .<_  ( ( R `  F ) 
.\/  ( R `  G ) ) )  ->  E. v  e.  A  ( v  .<_  W  /\  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
) ) ) )
5320, 52mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( ( F `  P )  =/=  P  /\  ( G `  P
)  =/=  P  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  E. v  e.  A  ( v  .<_  W  /\  ( v  =/=  ( R `  F )  /\  v  =/=  ( R `  G )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550   E.wrex 2650   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463   joincjn 14328   meetcmee 14329   Latclat 14401   Atomscatm 29378   HLchlt 29465   LHypclh 30098   LTrncltrn 30215   trLctrl 30272
This theorem is referenced by:  cdlemg36  30828
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-map 6956  df-poset 14330  df-plt 14342  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-p0 14395  df-p1 14396  df-lat 14402  df-clat 14464  df-oposet 29291  df-ol 29293  df-oml 29294  df-covers 29381  df-ats 29382  df-atl 29413  df-cvlat 29437  df-hlat 29466  df-lhyp 30102  df-laut 30103  df-ldil 30218  df-ltrn 30219  df-trl 30273
  Copyright terms: Public domain W3C validator