Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4 Unicode version

Theorem cdlemg4 30733
Description: TODO: FIX COMMENT (Contributed by NM, 25-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l  |-  .<_  =  ( le `  K )
cdlemg4.a  |-  A  =  ( Atoms `  K )
cdlemg4.h  |-  H  =  ( LHyp `  K
)
cdlemg4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg4.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg4.j  |-  .\/  =  ( join `  K )
cdlemg4b.v  |-  V  =  ( R `  G
)
Assertion
Ref Expression
cdlemg4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( F `  ( G `  Q ) )  =  Q )

Proof of Theorem cdlemg4
StepHypRef Expression
1 cdlemg4.l . . 3  |-  .<_  =  ( le `  K )
2 cdlemg4.a . . 3  |-  A  =  ( Atoms `  K )
3 cdlemg4.h . . 3  |-  H  =  ( LHyp `  K
)
4 cdlemg4.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
5 cdlemg4.r . . 3  |-  R  =  ( ( trL `  K
) `  W )
6 cdlemg4.j . . 3  |-  .\/  =  ( join `  K )
7 cdlemg4b.v . . 3  |-  V  =  ( R `  G
)
8 eqid 2389 . . 3  |-  ( meet `  K )  =  (
meet `  K )
91, 2, 3, 4, 5, 6, 7, 8cdlemg4g 30732 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( F `  ( G `  Q ) )  =  ( ( Q  .\/  V ) ( meet `  K
) ( P  .\/  Q ) ) )
10 simp1l 981 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  K  e.  HL )
11 simp21l 1074 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  P  e.  A )
12 simp22l 1076 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  Q  e.  A )
136, 2hlatjcom 29484 . . . 4  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
1410, 11, 12, 13syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
1514oveq2d 6038 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  (
( Q  .\/  V
) ( meet `  K
) ( P  .\/  Q ) )  =  ( ( Q  .\/  V
) ( meet `  K
) ( Q  .\/  P ) ) )
16 simp1 957 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
17 simp31 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  G  e.  T )
18 eqid 2389 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
1918, 3, 4, 5trlcl 30280 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  e.  (
Base `  K )
)
2016, 17, 19syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( R `  G )  e.  ( Base `  K
) )
217, 20syl5eqel 2473 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  V  e.  ( Base `  K
) )
22 simp32 994 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  -.  Q  .<_  ( P  .\/  V ) )
23 simp21r 1075 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  -.  P  .<_  W )
24 simp21 990 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
251, 6, 8, 2, 3, 4, 5trlval2 30279 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  G )  =  ( ( P  .\/  ( G `  P )
) ( meet `  K
) W ) )
2616, 17, 24, 25syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( R `  G )  =  ( ( P 
.\/  ( G `  P ) ) (
meet `  K ) W ) )
277, 26syl5eq 2433 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  V  =  ( ( P 
.\/  ( G `  P ) ) (
meet `  K ) W ) )
28 hllat 29480 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  Lat )
2910, 28syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  K  e.  Lat )
301, 2, 3, 4ltrnel 30255 . . . . . . . . . . . 12  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
3116, 17, 24, 30syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  (
( G `  P
)  e.  A  /\  -.  ( G `  P
)  .<_  W ) )
3231simpld 446 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( G `  P )  e.  A )
3318, 6, 2hlatjcl 29483 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( G `  P )  e.  A )  -> 
( P  .\/  ( G `  P )
)  e.  ( Base `  K ) )
3410, 11, 32, 33syl3anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( P  .\/  ( G `  P ) )  e.  ( Base `  K
) )
35 simp1r 982 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  W  e.  H )
3618, 3lhpbase 30114 . . . . . . . . . 10  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
3735, 36syl 16 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  W  e.  ( Base `  K
) )
3818, 1, 8latmle2 14435 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( G `
 P ) )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  ( G `  P ) ) (
meet `  K ) W )  .<_  W )
3929, 34, 37, 38syl3anc 1184 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  (
( P  .\/  ( G `  P )
) ( meet `  K
) W )  .<_  W )
4027, 39eqbrtrd 4175 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  V  .<_  W )
4118, 2atbase 29406 . . . . . . . . 9  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
4211, 41syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  P  e.  ( Base `  K
) )
4318, 1lattr 14414 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  V  e.  ( Base `  K )  /\  W  e.  ( Base `  K
) ) )  -> 
( ( P  .<_  V  /\  V  .<_  W )  ->  P  .<_  W ) )
4429, 42, 21, 37, 43syl13anc 1186 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  (
( P  .<_  V  /\  V  .<_  W )  ->  P  .<_  W ) )
4540, 44mpan2d 656 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( P  .<_  V  ->  P  .<_  W ) )
4623, 45mtod 170 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  -.  P  .<_  V )
4718, 1, 6, 2hlexch2 29499 . . . . 5  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A  /\  V  e.  ( Base `  K ) )  /\  -.  P  .<_  V )  ->  ( P  .<_  ( Q  .\/  V
)  ->  Q  .<_  ( P  .\/  V ) ) )
4810, 11, 12, 21, 46, 47syl131anc 1197 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( P  .<_  ( Q  .\/  V )  ->  Q  .<_  ( P  .\/  V ) ) )
4922, 48mtod 170 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  -.  P  .<_  ( Q  .\/  V ) )
5018, 1, 6, 8, 22llnma1b 29902 . . 3  |-  ( ( K  e.  HL  /\  ( V  e.  ( Base `  K )  /\  Q  e.  A  /\  P  e.  A )  /\  -.  P  .<_  ( Q 
.\/  V ) )  ->  ( ( Q 
.\/  V ) (
meet `  K )
( Q  .\/  P
) )  =  Q )
5110, 21, 12, 11, 49, 50syl131anc 1197 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  (
( Q  .\/  V
) ( meet `  K
) ( Q  .\/  P ) )  =  Q )
529, 15, 513eqtrd 2425 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  -.  Q  .<_  ( P  .\/  V
)  /\  ( F `  ( G `  P
) )  =  P ) )  ->  ( F `  ( G `  Q ) )  =  Q )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   class class class wbr 4155   ` cfv 5396  (class class class)co 6022   Basecbs 13398   lecple 13465   joincjn 14330   meetcmee 14331   Latclat 14403   Atomscatm 29380   HLchlt 29467   LHypclh 30100   LTrncltrn 30217   trLctrl 30274
This theorem is referenced by:  cdlemg6a  30734  cdlemg6b  30735  cdlemg6  30739
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-undef 6481  df-riota 6487  df-map 6958  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-p1 14398  df-lat 14404  df-clat 14466  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-llines 29614  df-lplanes 29615  df-lvols 29616  df-lines 29617  df-psubsp 29619  df-pmap 29620  df-padd 29912  df-lhyp 30104  df-laut 30105  df-ldil 30220  df-ltrn 30221  df-trl 30275
  Copyright terms: Public domain W3C validator