Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg44b Unicode version

Theorem cdlemg44b 31543
Description: Eliminate  ( F `
 P )  =/= 
P,  ( G `  P )  =/=  P from cdlemg44a 31542. (Contributed by NM, 3-Jun-2013.)
Hypotheses
Ref Expression
cdlemg44.h  |-  H  =  ( LHyp `  K
)
cdlemg44.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg44.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg44.l  |-  .<_  =  ( le `  K )
cdlemg44.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
cdlemg44b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `  F )  =/=  ( R `  G )
)  ->  ( F `  ( G `  P
) )  =  ( G `  ( F `
 P ) ) )

Proof of Theorem cdlemg44b
StepHypRef Expression
1 simpl1 958 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl21 1033 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  F  e.  T )
3 simpl23 1035 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simpl22 1034 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  G  e.  T )
5 cdlemg44.l . . . . . 6  |-  .<_  =  ( le `  K )
6 cdlemg44.a . . . . . 6  |-  A  =  ( Atoms `  K )
7 cdlemg44.h . . . . . 6  |-  H  =  ( LHyp `  K
)
8 cdlemg44.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
95, 6, 7, 8ltrnel 30950 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
101, 4, 3, 9syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  (
( G `  P
)  e.  A  /\  -.  ( G `  P
)  .<_  W ) )
11 simpr 447 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( F `  P )  =  P )
125, 6, 7, 8ltrnateq 30992 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( F `  ( G `  P ) )  =  ( G `  P
) )
131, 2, 3, 10, 11, 12syl131anc 1195 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( F `  ( G `  P ) )  =  ( G `  P
) )
1411fveq2d 5545 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( G `  ( F `  P ) )  =  ( G `  P
) )
1513, 14eqtr4d 2331 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( F `  P )  =  P )  ->  ( F `  ( G `  P ) )  =  ( G `  ( F `  P )
) )
16 simpr 447 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( G `  P )  =  P )
1716fveq2d 5545 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( F `  ( G `  P ) )  =  ( F `  P
) )
18 simpl1 958 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
19 simpl22 1034 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  G  e.  T )
20 simpl23 1035 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
21 simpl21 1033 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  F  e.  T )
225, 6, 7, 8ltrnel 30950 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
2318, 21, 20, 22syl3anc 1182 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  (
( F `  P
)  e.  A  /\  -.  ( F `  P
)  .<_  W ) )
245, 6, 7, 8ltrnateq 30992 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  /\  ( G `
 P )  =  P )  ->  ( G `  ( F `  P ) )  =  ( F `  P
) )
2518, 19, 20, 23, 16, 24syl131anc 1195 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( G `  ( F `  P ) )  =  ( F `  P
) )
2617, 25eqtr4d 2331 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  ( G `  P )  =  P )  ->  ( F `  ( G `  P ) )  =  ( G `  ( F `  P )
) )
27 simpl1 958 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
28 simpl2 959 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )
29 simprl 732 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( F `  P )  =/=  P
)
30 simprr 733 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( G `  P )  =/=  P
)
31 simpl3 960 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( R `  F )  =/=  ( R `  G )
)
32 cdlemg44.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
337, 8, 32, 5, 6cdlemg44a 31542 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( ( F `
 P )  =/= 
P  /\  ( G `  P )  =/=  P  /\  ( R `  F
)  =/=  ( R `
 G ) ) )  ->  ( F `  ( G `  P
) )  =  ( G `  ( F `
 P ) ) )
3427, 28, 29, 30, 31, 33syl113anc 1194 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `
 F )  =/=  ( R `  G
) )  /\  (
( F `  P
)  =/=  P  /\  ( G `  P )  =/=  P ) )  ->  ( F `  ( G `  P ) )  =  ( G `
 ( F `  P ) ) )
3515, 26, 34pm2.61da2ne 2538 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( R `  F )  =/=  ( R `  G )
)  ->  ( F `  ( G `  P
) )  =  ( G `  ( F `
 P ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271   lecple 13231   Atomscatm 30075   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   trLctrl 30969
This theorem is referenced by:  cdlemg44  31544
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970
  Copyright terms: Public domain W3C validator