Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg4a Unicode version

Theorem cdlemg4a 30797
Description: TODO: FIX COMMENT If fg(p) = p, then tr f = tr g. (Contributed by NM, 23-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l  |-  .<_  =  ( le `  K )
cdlemg4.a  |-  A  =  ( Atoms `  K )
cdlemg4.h  |-  H  =  ( LHyp `  K
)
cdlemg4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg4.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemg4a  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( R `  F )  =  ( R `  G ) )

Proof of Theorem cdlemg4a
StepHypRef Expression
1 simp3 957 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( F `  ( G `  P ) )  =  P )
21oveq2d 5874 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( ( G `
 P ) (
join `  K )
( F `  ( G `  P )
) )  =  ( ( G `  P
) ( join `  K
) P ) )
3 simp1l 979 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  K  e.  HL )
4 simp1 955 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
5 simp23 990 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  G  e.  T
)
6 simp21 988 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
7 cdlemg4.l . . . . . . . 8  |-  .<_  =  ( le `  K )
8 cdlemg4.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
9 cdlemg4.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
10 cdlemg4.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
117, 8, 9, 10ltrnel 30328 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
1211simpld 445 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G `  P )  e.  A
)
134, 5, 6, 12syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( G `  P )  e.  A
)
14 simp21l 1072 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  P  e.  A
)
15 eqid 2283 . . . . . 6  |-  ( join `  K )  =  (
join `  K )
1615, 8hlatjcom 29557 . . . . 5  |-  ( ( K  e.  HL  /\  ( G `  P )  e.  A  /\  P  e.  A )  ->  (
( G `  P
) ( join `  K
) P )  =  ( P ( join `  K ) ( G `
 P ) ) )
173, 13, 14, 16syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( ( G `
 P ) (
join `  K ) P )  =  ( P ( join `  K
) ( G `  P ) ) )
182, 17eqtrd 2315 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( ( G `
 P ) (
join `  K )
( F `  ( G `  P )
) )  =  ( P ( join `  K
) ( G `  P ) ) )
1918oveq1d 5873 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( ( ( G `  P ) ( join `  K
) ( F `  ( G `  P ) ) ) ( meet `  K ) W )  =  ( ( P ( join `  K
) ( G `  P ) ) (
meet `  K ) W ) )
20 simp22 989 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  F  e.  T
)
214, 5, 6, 11syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( ( G `
 P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
22 eqid 2283 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
23 cdlemg4.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
247, 15, 22, 8, 9, 10, 23trlval2 30352 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )  ->  ( R `  F )  =  ( ( ( G `  P ) ( join `  K ) ( F `
 ( G `  P ) ) ) ( meet `  K
) W ) )
254, 20, 21, 24syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( R `  F )  =  ( ( ( G `  P ) ( join `  K ) ( F `
 ( G `  P ) ) ) ( meet `  K
) W ) )
267, 15, 22, 8, 9, 10, 23trlval2 30352 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  G )  =  ( ( P ( join `  K ) ( G `
 P ) ) ( meet `  K
) W ) )
274, 5, 6, 26syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( R `  G )  =  ( ( P ( join `  K ) ( G `
 P ) ) ( meet `  K
) W ) )
2819, 25, 273eqtr4d 2325 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T  /\  G  e.  T )  /\  ( F `  ( G `  P )
)  =  P )  ->  ( R `  F )  =  ( R `  G ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   lecple 13215   joincjn 14078   meetcmee 14079   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347
This theorem is referenced by:  cdlemg4f  30804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-glb 14109  df-join 14110  df-p0 14145  df-lat 14152  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348
  Copyright terms: Public domain W3C validator