Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg6e Unicode version

Theorem cdlemg6e 30863
Description: TODO: FIX COMMENT (Contributed by NM, 27-Apr-2013.)
Hypotheses
Ref Expression
cdlemg4.l  |-  .<_  =  ( le `  K )
cdlemg4.a  |-  A  =  ( Atoms `  K )
cdlemg4.h  |-  H  =  ( LHyp `  K
)
cdlemg4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg4.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemg4.j  |-  .\/  =  ( join `  K )
cdlemg4b.v  |-  V  =  ( R `  G
)
Assertion
Ref Expression
cdlemg6e  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( F `  ( G `  Q
) )  =  Q )

Proof of Theorem cdlemg6e
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 988 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
3 simp31 991 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  G  e.  T )
4 cdlemg4.l . . . . 5  |-  .<_  =  ( le `  K )
5 cdlemg4.a . . . . 5  |-  A  =  ( Atoms `  K )
6 cdlemg4.h . . . . 5  |-  H  =  ( LHyp `  K
)
7 cdlemg4.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
84, 5, 6, 7ltrnel 30380 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
91, 3, 2, 8syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
10 cdlemg4.j . . . 4  |-  .\/  =  ( join `  K )
114, 10, 5, 6cdlemb3 30847 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  (
( G `  P
)  e.  A  /\  -.  ( G `  P
)  .<_  W ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  ( G `
 P ) ) ) )
121, 2, 9, 11syl3anc 1182 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P  .\/  ( G `  P ) ) ) )
13 cdlemg4.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
14 cdlemg4b.v . . . . . 6  |-  V  =  ( R `  G
)
154, 5, 6, 7, 13, 10, 14cdlemg6d 30862 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( (
( r  e.  A  /\  -.  r  .<_  W )  /\  -.  r  .<_  ( P  .\/  ( G `
 P ) ) )  ->  ( F `  ( G `  Q
) )  =  Q ) )
1615exp4c 591 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( r  e.  A  ->  ( -.  r  .<_  W  ->  ( -.  r  .<_  ( P 
.\/  ( G `  P ) )  -> 
( F `  ( G `  Q )
)  =  Q ) ) ) )
1716imp4a 572 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( r  e.  A  ->  ( ( -.  r  .<_  W  /\  -.  r  .<_  ( P 
.\/  ( G `  P ) ) )  ->  ( F `  ( G `  Q ) )  =  Q ) ) )
1817rexlimdv 2742 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( E. r  e.  A  ( -.  r  .<_  W  /\  -.  r  .<_  ( P 
.\/  ( G `  P ) ) )  ->  ( F `  ( G `  Q ) )  =  Q ) )
1912, 18mpd 14 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  Q  .<_  ( P  .\/  V )  /\  ( F `  ( G `  P ) )  =  P ) )  ->  ( F `  ( G `  Q
) )  =  Q )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   E.wrex 2620   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   lecple 13306   joincjn 14171   Atomscatm 29505   HLchlt 29592   LHypclh 30225   LTrncltrn 30342   trLctrl 30399
This theorem is referenced by:  cdlemg6  30864
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-undef 6382  df-riota 6388  df-map 6859  df-poset 14173  df-plt 14185  df-lub 14201  df-glb 14202  df-join 14203  df-meet 14204  df-p0 14238  df-p1 14239  df-lat 14245  df-clat 14307  df-oposet 29418  df-ol 29420  df-oml 29421  df-covers 29508  df-ats 29509  df-atl 29540  df-cvlat 29564  df-hlat 29593  df-llines 29739  df-lplanes 29740  df-lvols 29741  df-lines 29742  df-psubsp 29744  df-pmap 29745  df-padd 30037  df-lhyp 30229  df-laut 30230  df-ldil 30345  df-ltrn 30346  df-trl 30400
  Copyright terms: Public domain W3C validator