Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg7fvbwN Unicode version

Theorem cdlemg7fvbwN 30796
Description: Properties of a translation of an element not under 
W. TODO: Fix comment. Can this be simplified? Perhaps derived from cdleme48bw 30691? Done with a *ltrn* theorem? (Contributed by NM, 28-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg4.l  |-  .<_  =  ( le `  K )
cdlemg4.a  |-  A  =  ( Atoms `  K )
cdlemg4.h  |-  H  =  ( LHyp `  K
)
cdlemg4.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemg4.b  |-  B  =  ( Base `  K
)
Assertion
Ref Expression
cdlemg7fvbwN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T )  ->  (
( F `  X
)  e.  B  /\  -.  ( F `  X
)  .<_  W ) )

Proof of Theorem cdlemg7fvbwN
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 cdlemg4.b . . . 4  |-  B  =  ( Base `  K
)
2 cdlemg4.l . . . 4  |-  .<_  =  ( le `  K )
3 eqid 2283 . . . 4  |-  ( join `  K )  =  (
join `  K )
4 eqid 2283 . . . 4  |-  ( meet `  K )  =  (
meet `  K )
5 cdlemg4.a . . . 4  |-  A  =  ( Atoms `  K )
6 cdlemg4.h . . . 4  |-  H  =  ( LHyp `  K
)
71, 2, 3, 4, 5, 6lhpmcvr2 30213 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  ( r (
join `  K )
( X ( meet `  K ) W ) )  =  X ) )
873adant3 975 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T )  ->  E. r  e.  A  ( -.  r  .<_  W  /\  (
r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )
9 simp11 985 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
10 simp2 956 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
r  e.  A )
11 simp3l 983 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  -.  r  .<_  W )
1210, 11jca 518 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( r  e.  A  /\  -.  r  .<_  W ) )
13 simp12 986 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( X  e.  B  /\  -.  X  .<_  W ) )
14 simp13 987 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  F  e.  T )
15 simp3r 984 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( r ( join `  K ) ( X ( meet `  K
) W ) )  =  X )
16 cdlemg4.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
176, 16, 2, 3, 5, 4, 1cdlemg2fv 30788 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( r  e.  A  /\  -.  r  .<_  W )  /\  ( X  e.  B  /\  -.  X  .<_  W ) )  /\  ( F  e.  T  /\  (
r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  X
)  =  ( ( F `  r ) ( join `  K
) ( X (
meet `  K ) W ) ) )
189, 12, 13, 14, 15, 17syl122anc 1191 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  X
)  =  ( ( F `  r ) ( join `  K
) ( X (
meet `  K ) W ) ) )
19 simp11l 1066 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  K  e.  HL )
20 hllat 29553 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  Lat )
2119, 20syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  K  e.  Lat )
222, 5, 6, 16ltrnel 30328 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( r  e.  A  /\  -.  r  .<_  W ) )  ->  ( ( F `  r )  e.  A  /\  -.  ( F `  r )  .<_  W ) )
2322simpld 445 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( r  e.  A  /\  -.  r  .<_  W ) )  ->  ( F `  r )  e.  A
)
249, 14, 12, 23syl3anc 1182 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  r
)  e.  A )
251, 5atbase 29479 . . . . . . 7  |-  ( ( F `  r )  e.  A  ->  ( F `  r )  e.  B )
2624, 25syl 15 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  r
)  e.  B )
27 simp12l 1068 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  X  e.  B )
28 simp11r 1067 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  W  e.  H )
291, 6lhpbase 30187 . . . . . . . 8  |-  ( W  e.  H  ->  W  e.  B )
3028, 29syl 15 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  W  e.  B )
311, 4latmcl 14157 . . . . . . 7  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  W  e.  B )  ->  ( X ( meet `  K ) W )  e.  B )
3221, 27, 30, 31syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( X ( meet `  K ) W )  e.  B )
331, 3latjcl 14156 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( F `  r )  e.  B  /\  ( X ( meet `  K
) W )  e.  B )  ->  (
( F `  r
) ( join `  K
) ( X (
meet `  K ) W ) )  e.  B )
3421, 26, 32, 33syl3anc 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) )  e.  B )
3518, 34eqeltrd 2357 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  X
)  e.  B )
3622simprd 449 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( r  e.  A  /\  -.  r  .<_  W ) )  ->  -.  ( F `  r )  .<_  W )
379, 14, 12, 36syl3anc 1182 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  -.  ( F `  r
)  .<_  W )
381, 2, 3latlej1 14166 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( F `  r )  e.  B  /\  ( X ( meet `  K
) W )  e.  B )  ->  ( F `  r )  .<_  ( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) ) )
3921, 26, 32, 38syl3anc 1182 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( F `  r
)  .<_  ( ( F `
 r ) (
join `  K )
( X ( meet `  K ) W ) ) )
401, 2lattr 14162 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( ( F `  r )  e.  B  /\  ( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) )  e.  B  /\  W  e.  B ) )  -> 
( ( ( F `
 r )  .<_  ( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) )  /\  ( ( F `
 r ) (
join `  K )
( X ( meet `  K ) W ) )  .<_  W )  ->  ( F `  r
)  .<_  W ) )
4121, 26, 34, 30, 40syl13anc 1184 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( ( ( F `
 r )  .<_  ( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) )  /\  ( ( F `
 r ) (
join `  K )
( X ( meet `  K ) W ) )  .<_  W )  ->  ( F `  r
)  .<_  W ) )
4239, 41mpand 656 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( ( ( F `
 r ) (
join `  K )
( X ( meet `  K ) W ) )  .<_  W  ->  ( F `  r ) 
.<_  W ) )
4337, 42mtod 168 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  -.  ( ( F `  r ) ( join `  K ) ( X ( meet `  K
) W ) ) 
.<_  W )
4418breq1d 4033 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( ( F `  X )  .<_  W  <->  ( ( F `  r )
( join `  K )
( X ( meet `  K ) W ) )  .<_  W )
)
4543, 44mtbird 292 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  ->  -.  ( F `  X
)  .<_  W )
4635, 45jca 518 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T
)  /\  r  e.  A  /\  ( -.  r  .<_  W  /\  ( r ( join `  K
) ( X (
meet `  K ) W ) )  =  X ) )  -> 
( ( F `  X )  e.  B  /\  -.  ( F `  X )  .<_  W ) )
4746rexlimdv3a 2669 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T )  ->  ( E. r  e.  A  ( -.  r  .<_  W  /\  ( r (
join `  K )
( X ( meet `  K ) W ) )  =  X )  ->  ( ( F `
 X )  e.  B  /\  -.  ( F `  X )  .<_  W ) ) )
488, 47mpd 14 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( X  e.  B  /\  -.  X  .<_  W )  /\  F  e.  T )  ->  (
( F `  X
)  e.  B  /\  -.  ( F `  X
)  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   E.wrex 2544   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Basecbs 13148   lecple 13215   joincjn 14078   meetcmee 14079   Latclat 14151   Atomscatm 29453   HLchlt 29540   LHypclh 30173   LTrncltrn 30290
This theorem is referenced by:  cdlemg7fvN  30813
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348
  Copyright terms: Public domain W3C validator