Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg8b Unicode version

Theorem cdlemg8b 31439
Description: TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
Hypotheses
Ref Expression
cdlemg8.l  |-  .<_  =  ( le `  K )
cdlemg8.j  |-  .\/  =  ( join `  K )
cdlemg8.m  |-  ./\  =  ( meet `  K )
cdlemg8.a  |-  A  =  ( Atoms `  K )
cdlemg8.h  |-  H  =  ( LHyp `  K
)
cdlemg8.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemg8b  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( P  .\/  ( F `  ( G `  P ) ) )  =  ( P  .\/  Q ) )

Proof of Theorem cdlemg8b
StepHypRef Expression
1 simp1l 979 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  K  e.  HL )
2 hllat 30175 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  K  e.  Lat )
4 simp21l 1072 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  P  e.  A )
5 eqid 2296 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
6 cdlemg8.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 30101 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
84, 7syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  P  e.  ( Base `  K
) )
9 simp22l 1074 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  Q  e.  A )
105, 6atbase 30101 . . . . 5  |-  ( Q  e.  A  ->  Q  e.  ( Base `  K
) )
119, 10syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  Q  e.  ( Base `  K
) )
12 cdlemg8.l . . . . 5  |-  .<_  =  ( le `  K )
13 cdlemg8.j . . . . 5  |-  .\/  =  ( join `  K )
145, 12, 13latlej1 14182 . . . 4  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  Q  e.  ( Base `  K
) )  ->  P  .<_  ( P  .\/  Q
) )
153, 8, 11, 14syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  P  .<_  ( P  .\/  Q
) )
16 simp1 955 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
17 simp23 990 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  F  e.  T )
18 simp31 991 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  G  e.  T )
19 simp21 988 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
20 cdlemg8.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
21 cdlemg8.t . . . . . . . . 9  |-  T  =  ( ( LTrn `  K
) `  W )
2212, 6, 20, 21ltrnel 30950 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
2316, 18, 19, 22syl3anc 1182 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( G `  P
)  e.  A  /\  -.  ( G `  P
)  .<_  W ) )
2412, 6, 20, 21ltrnel 30950 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )  ->  ( ( F `  ( G `  P ) )  e.  A  /\  -.  ( F `  ( G `  P ) )  .<_  W ) )
2524simpld 445 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )  ->  ( F `  ( G `  P
) )  e.  A
)
2616, 17, 23, 25syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( F `  ( G `  P ) )  e.  A )
275, 6atbase 30101 . . . . . 6  |-  ( ( F `  ( G `
 P ) )  e.  A  ->  ( F `  ( G `  P ) )  e.  ( Base `  K
) )
2826, 27syl 15 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( F `  ( G `  P ) )  e.  ( Base `  K
) )
295, 20, 21ltrncl 30936 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  Q  e.  ( Base `  K ) )  ->  ( G `  Q )  e.  (
Base `  K )
)
3016, 18, 11, 29syl3anc 1182 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( G `  Q )  e.  ( Base `  K
) )
315, 20, 21ltrncl 30936 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( G `  Q
)  e.  ( Base `  K ) )  -> 
( F `  ( G `  Q )
)  e.  ( Base `  K ) )
3216, 17, 30, 31syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( F `  ( G `  Q ) )  e.  ( Base `  K
) )
335, 12, 13latlej1 14182 . . . . 5  |-  ( ( K  e.  Lat  /\  ( F `  ( G `
 P ) )  e.  ( Base `  K
)  /\  ( F `  ( G `  Q
) )  e.  (
Base `  K )
)  ->  ( F `  ( G `  P
) )  .<_  ( ( F `  ( G `
 P ) ) 
.\/  ( F `  ( G `  Q ) ) ) )
343, 28, 32, 33syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( F `  ( G `  P ) )  .<_  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) ) )
35 simp32 992 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
) )
3634, 35breqtrd 4063 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( F `  ( G `  P ) )  .<_  ( P  .\/  Q ) )
375, 13, 6hlatjcl 30178 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
381, 4, 9, 37syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
395, 12, 13latjle12 14184 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  ( F `  ( G `
 P ) )  e.  ( Base `  K
)  /\  ( P  .\/  Q )  e.  (
Base `  K )
) )  ->  (
( P  .<_  ( P 
.\/  Q )  /\  ( F `  ( G `
 P ) ) 
.<_  ( P  .\/  Q
) )  <->  ( P  .\/  ( F `  ( G `  P )
) )  .<_  ( P 
.\/  Q ) ) )
403, 8, 28, 38, 39syl13anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( P  .<_  ( P 
.\/  Q )  /\  ( F `  ( G `
 P ) ) 
.<_  ( P  .\/  Q
) )  <->  ( P  .\/  ( F `  ( G `  P )
) )  .<_  ( P 
.\/  Q ) ) )
4115, 36, 40mpbi2and 887 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( P  .\/  ( F `  ( G `  P ) ) )  .<_  ( P 
.\/  Q ) )
42 simp33 993 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( F `  ( G `  P ) )  =/= 
P )
4342necomd 2542 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  P  =/=  ( F `  ( G `  P )
) )
4412, 13, 6ps-1 30288 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  ( F `  ( G `  P )
)  e.  A  /\  P  =/=  ( F `  ( G `  P ) ) )  /\  ( P  e.  A  /\  Q  e.  A )
)  ->  ( ( P  .\/  ( F `  ( G `  P ) ) )  .<_  ( P 
.\/  Q )  <->  ( P  .\/  ( F `  ( G `  P )
) )  =  ( P  .\/  Q ) ) )
451, 4, 26, 43, 4, 9, 44syl132anc 1200 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( P  .\/  ( F `  ( G `  P ) ) ) 
.<_  ( P  .\/  Q
)  <->  ( P  .\/  ( F `  ( G `
 P ) ) )  =  ( P 
.\/  Q ) ) )
4641, 45mpbid 201 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( P  .\/  ( F `  ( G `  P ) ) )  =  ( P  .\/  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   Latclat 14167   Atomscatm 30075   HLchlt 30162   LHypclh 30795   LTrncltrn 30912
This theorem is referenced by:  cdlemg8c  31440  cdlemg8d  31441
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-p0 14161  df-lat 14168  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916
  Copyright terms: Public domain W3C validator