Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg8c Structured version   Unicode version

Theorem cdlemg8c 31488
Description: TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
Hypotheses
Ref Expression
cdlemg8.l  |-  .<_  =  ( le `  K )
cdlemg8.j  |-  .\/  =  ( join `  K )
cdlemg8.m  |-  ./\  =  ( meet `  K )
cdlemg8.a  |-  A  =  ( Atoms `  K )
cdlemg8.h  |-  H  =  ( LHyp `  K
)
cdlemg8.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemg8c  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( Q  .\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) )

Proof of Theorem cdlemg8c
StepHypRef Expression
1 simp1 958 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp22 992 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
3 simp21 991 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
4 simp23 993 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  F  e.  T )
5 simp31 994 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  G  e.  T )
6 simp32 995 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
) )
7 simp1l 982 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  K  e.  HL )
8 cdlemg8.l . . . . . . . 8  |-  .<_  =  ( le `  K )
9 cdlemg8.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
10 cdlemg8.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
11 cdlemg8.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
128, 9, 10, 11ltrnel 30998 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )
131, 5, 3, 12syl3anc 1185 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( G `  P
)  e.  A  /\  -.  ( G `  P
)  .<_  W ) )
148, 9, 10, 11ltrnel 30998 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )  ->  ( ( F `  ( G `  P ) )  e.  A  /\  -.  ( F `  ( G `  P ) )  .<_  W ) )
1514simpld 447 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( G `  P )  e.  A  /\  -.  ( G `  P )  .<_  W ) )  ->  ( F `  ( G `  P
) )  e.  A
)
161, 4, 13, 15syl3anc 1185 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( F `  ( G `  P ) )  e.  A )
178, 9, 10, 11ltrnel 30998 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  ->  ( ( G `  Q )  e.  A  /\  -.  ( G `  Q )  .<_  W ) )
181, 5, 2, 17syl3anc 1185 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( G `  Q
)  e.  A  /\  -.  ( G `  Q
)  .<_  W ) )
198, 9, 10, 11ltrnel 30998 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( G `  Q )  e.  A  /\  -.  ( G `  Q )  .<_  W ) )  ->  ( ( F `  ( G `  Q ) )  e.  A  /\  -.  ( F `  ( G `  Q ) )  .<_  W ) )
2019simpld 447 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( ( G `  Q )  e.  A  /\  -.  ( G `  Q )  .<_  W ) )  ->  ( F `  ( G `  Q
) )  e.  A
)
211, 4, 18, 20syl3anc 1185 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( F `  ( G `  Q ) )  e.  A )
22 cdlemg8.j . . . . . 6  |-  .\/  =  ( join `  K )
2322, 9hlatjcom 30227 . . . . 5  |-  ( ( K  e.  HL  /\  ( F `  ( G `
 P ) )  e.  A  /\  ( F `  ( G `  Q ) )  e.  A )  ->  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( ( F `  ( G `  Q ) )  .\/  ( F `
 ( G `  P ) ) ) )
247, 16, 21, 23syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( ( F `  ( G `  Q ) )  .\/  ( F `
 ( G `  P ) ) ) )
25 simp21l 1075 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  P  e.  A )
26 simp22l 1077 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  Q  e.  A )
2722, 9hlatjcom 30227 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  =  ( Q 
.\/  P ) )
287, 25, 26, 27syl3anc 1185 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( P  .\/  Q )  =  ( Q  .\/  P
) )
296, 24, 283eqtr3d 2478 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( F `  ( G `  Q )
)  .\/  ( F `  ( G `  P
) ) )  =  ( Q  .\/  P
) )
30 simp33 996 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( F `  ( G `  P ) )  =/= 
P )
31 simpl1 961 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `
 ( G `  P ) )  =/= 
P ) )  /\  ( F `  ( G `
 Q ) )  =  Q )  -> 
( K  e.  HL  /\  W  e.  H ) )
32 simpl22 1037 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `
 ( G `  P ) )  =/= 
P ) )  /\  ( F `  ( G `
 Q ) )  =  Q )  -> 
( Q  e.  A  /\  -.  Q  .<_  W ) )
33 simpl21 1036 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `
 ( G `  P ) )  =/= 
P ) )  /\  ( F `  ( G `
 Q ) )  =  Q )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
34 simpl23 1038 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `
 ( G `  P ) )  =/= 
P ) )  /\  ( F `  ( G `
 Q ) )  =  Q )  ->  F  e.  T )
35 simpl31 1039 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `
 ( G `  P ) )  =/= 
P ) )  /\  ( F `  ( G `
 Q ) )  =  Q )  ->  G  e.  T )
36 simpr 449 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `
 ( G `  P ) )  =/= 
P ) )  /\  ( F `  ( G `
 Q ) )  =  Q )  -> 
( F `  ( G `  Q )
)  =  Q )
378, 9, 10, 11cdlemg6 31482 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F  e.  T  /\  G  e.  T  /\  ( F `  ( G `  Q ) )  =  Q ) )  -> 
( F `  ( G `  P )
)  =  P )
3831, 32, 33, 34, 35, 36, 37syl123anc 1202 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T )  /\  ( G  e.  T  /\  ( ( F `  ( G `  P ) )  .\/  ( F `
 ( G `  Q ) ) )  =  ( P  .\/  Q )  /\  ( F `
 ( G `  P ) )  =/= 
P ) )  /\  ( F `  ( G `
 Q ) )  =  Q )  -> 
( F `  ( G `  P )
)  =  P )
3938ex 425 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( F `  ( G `  Q )
)  =  Q  -> 
( F `  ( G `  P )
)  =  P ) )
4039necon3d 2641 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( F `  ( G `  P )
)  =/=  P  -> 
( F `  ( G `  Q )
)  =/=  Q ) )
4130, 40mpd 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( F `  ( G `  Q ) )  =/= 
Q )
42 cdlemg8.m . . . 4  |-  ./\  =  ( meet `  K )
438, 22, 42, 9, 10, 11cdlemg8b 31487 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  Q )
)  .\/  ( F `  ( G `  P
) ) )  =  ( Q  .\/  P
)  /\  ( F `  ( G `  Q
) )  =/=  Q
) )  ->  ( Q  .\/  ( F `  ( G `  Q ) ) )  =  ( Q  .\/  P ) )
441, 2, 3, 4, 5, 29, 41, 43syl133anc 1208 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( Q  .\/  ( F `  ( G `  Q ) ) )  =  ( Q  .\/  P ) )
4544, 28eqtr4d 2473 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( Q  .\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   class class class wbr 4214   ` cfv 5456  (class class class)co 6083   lecple 13538   joincjn 14403   meetcmee 14404   Atomscatm 30123   HLchlt 30210   LHypclh 30843   LTrncltrn 30960
This theorem is referenced by:  cdlemg8d  31489
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-undef 6545  df-riota 6551  df-map 7022  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-clat 14539  df-oposet 30036  df-ol 30038  df-oml 30039  df-covers 30126  df-ats 30127  df-atl 30158  df-cvlat 30182  df-hlat 30211  df-llines 30357  df-lplanes 30358  df-lvols 30359  df-lines 30360  df-psubsp 30362  df-pmap 30363  df-padd 30655  df-lhyp 30847  df-laut 30848  df-ldil 30963  df-ltrn 30964  df-trl 31018
  Copyright terms: Public domain W3C validator