Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg8d Unicode version

Theorem cdlemg8d 31124
Description: TODO: FIX COMMENT (Contributed by NM, 29-Apr-2013.)
Hypotheses
Ref Expression
cdlemg8.l  |-  .<_  =  ( le `  K )
cdlemg8.j  |-  .\/  =  ( join `  K )
cdlemg8.m  |-  ./\  =  ( meet `  K )
cdlemg8.a  |-  A  =  ( Atoms `  K )
cdlemg8.h  |-  H  =  ( LHyp `  K
)
cdlemg8.t  |-  T  =  ( ( LTrn `  K
) `  W )
Assertion
Ref Expression
cdlemg8d  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( P  .\/  ( F `  ( G `  P ) ) ) 
./\  W )  =  ( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )
)

Proof of Theorem cdlemg8d
StepHypRef Expression
1 cdlemg8.l . . . 4  |-  .<_  =  ( le `  K )
2 cdlemg8.j . . . 4  |-  .\/  =  ( join `  K )
3 cdlemg8.m . . . 4  |-  ./\  =  ( meet `  K )
4 cdlemg8.a . . . 4  |-  A  =  ( Atoms `  K )
5 cdlemg8.h . . . 4  |-  H  =  ( LHyp `  K
)
6 cdlemg8.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
71, 2, 3, 4, 5, 6cdlemg8b 31122 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( P  .\/  ( F `  ( G `  P ) ) )  =  ( P  .\/  Q ) )
81, 2, 3, 4, 5, 6cdlemg8c 31123 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( Q  .\/  ( F `  ( G `  Q ) ) )  =  ( P  .\/  Q ) )
97, 8eqtr4d 2447 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  ( P  .\/  ( F `  ( G `  P ) ) )  =  ( Q  .\/  ( F `
 ( G `  Q ) ) ) )
109oveq1d 6063 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  F  e.  T
)  /\  ( G  e.  T  /\  (
( F `  ( G `  P )
)  .\/  ( F `  ( G `  Q
) ) )  =  ( P  .\/  Q
)  /\  ( F `  ( G `  P
) )  =/=  P
) )  ->  (
( P  .\/  ( F `  ( G `  P ) ) ) 
./\  W )  =  ( ( Q  .\/  ( F `  ( G `
 Q ) ) )  ./\  W )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2575   class class class wbr 4180   ` cfv 5421  (class class class)co 6048   lecple 13499   joincjn 14364   meetcmee 14365   Atomscatm 29758   HLchlt 29845   LHypclh 30478   LTrncltrn 30595
This theorem is referenced by:  cdlemg8  31125
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-id 4466  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-undef 6510  df-riota 6516  df-map 6987  df-poset 14366  df-plt 14378  df-lub 14394  df-glb 14395  df-join 14396  df-meet 14397  df-p0 14431  df-p1 14432  df-lat 14438  df-clat 14500  df-oposet 29671  df-ol 29673  df-oml 29674  df-covers 29761  df-ats 29762  df-atl 29793  df-cvlat 29817  df-hlat 29846  df-llines 29992  df-lplanes 29993  df-lvols 29994  df-lines 29995  df-psubsp 29997  df-pmap 29998  df-padd 30290  df-lhyp 30482  df-laut 30483  df-ldil 30598  df-ltrn 30599  df-trl 30653
  Copyright terms: Public domain W3C validator