Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemh Unicode version

Theorem cdlemh 31077
Description: Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.)
Hypotheses
Ref Expression
cdlemh.b  |-  B  =  ( Base `  K
)
cdlemh.l  |-  .<_  =  ( le `  K )
cdlemh.j  |-  .\/  =  ( join `  K )
cdlemh.m  |-  ./\  =  ( meet `  K )
cdlemh.a  |-  A  =  ( Atoms `  K )
cdlemh.h  |-  H  =  ( LHyp `  K
)
cdlemh.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemh.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemh.s  |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )
Assertion
Ref Expression
cdlemh  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )

Proof of Theorem cdlemh
StepHypRef Expression
1 simp1 956 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T ) )
2 simp21l 1073 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  P  e.  A
)
3 simp22l 1075 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  Q  e.  A
)
4 simp23 991 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  Q  .<_  ( P 
.\/  ( R `  F ) ) )
5 simp33 994 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  F )  =/=  ( R `  G )
)
6 cdlemh.b . . . . . 6  |-  B  =  ( Base `  K
)
7 cdlemh.l . . . . . 6  |-  .<_  =  ( le `  K )
8 cdlemh.j . . . . . 6  |-  .\/  =  ( join `  K )
9 cdlemh.m . . . . . 6  |-  ./\  =  ( meet `  K )
10 cdlemh.a . . . . . 6  |-  A  =  ( Atoms `  K )
11 cdlemh.h . . . . . 6  |-  H  =  ( LHyp `  K
)
12 cdlemh.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
13 cdlemh.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
14 cdlemh.s . . . . . 6  |-  S  =  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )
156, 7, 8, 9, 10, 11, 12, 13, 14cdlemh1 31075 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  Q  e.  A )  /\  ( Q  .<_  ( P 
.\/  ( R `  F ) )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )
161, 2, 3, 4, 5, 15syl122anc 1192 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )
17 oveq1 5988 . . . . . . . 8  |-  ( S  =  ( 0. `  K )  ->  ( S  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( 0.
`  K )  .\/  ( R `  ( G  o.  `' F ) ) ) )
18 simp11l 1067 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  K  e.  HL )
19 hlol 29622 . . . . . . . . . 10  |-  ( K  e.  HL  ->  K  e.  OL )
2018, 19syl 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  K  e.  OL )
21 simp11r 1068 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  W  e.  H
)
2218, 21jca 518 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
23 simp13 988 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  G  e.  T
)
24 simp12 987 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  F  e.  T
)
2511, 12ltrncnv 30406 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
2622, 24, 25syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  `' F  e.  T )
2723, 26jca 518 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( G  e.  T  /\  `' F  e.  T ) )
285necomd 2612 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  G )  =/=  ( R `  F )
)
2911, 12, 13trlcnv 30425 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  `' F )  =  ( R `  F ) )
3022, 24, 29syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  `' F )  =  ( R `  F ) )
3128, 30neeqtrrd 2553 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  G )  =/=  ( R `  `' F
) )
3210, 11, 12, 13trlcoat 30983 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  `' F  e.  T )  /\  ( R `  G )  =/=  ( R `  `' F ) )  -> 
( R `  ( G  o.  `' F
) )  e.  A
)
3322, 27, 31, 32syl3anc 1183 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  ( G  o.  `' F ) )  e.  A )
346, 10atbase 29550 . . . . . . . . . 10  |-  ( ( R `  ( G  o.  `' F ) )  e.  A  -> 
( R `  ( G  o.  `' F
) )  e.  B
)
3533, 34syl 15 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  ( G  o.  `' F ) )  e.  B )
36 eqid 2366 . . . . . . . . . 10  |-  ( 0.
`  K )  =  ( 0. `  K
)
376, 8, 36olj02 29487 . . . . . . . . 9  |-  ( ( K  e.  OL  /\  ( R `  ( G  o.  `' F ) )  e.  B )  ->  ( ( 0.
`  K )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( R `  ( G  o.  `' F ) ) )
3820, 35, 37syl2anc 642 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( 0.
`  K )  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( R `  ( G  o.  `' F ) ) )
3917, 38sylan9eqr 2420 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  S  =  ( 0. `  K ) )  ->  ( S  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( R `  ( G  o.  `' F
) ) )
4011, 12ltrnco 30979 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( G  o.  `' F )  e.  T
)
4122, 23, 26, 40syl3anc 1183 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( G  o.  `' F )  e.  T
)
427, 11, 12, 13trlle 30444 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T
)  ->  ( R `  ( G  o.  `' F ) )  .<_  W )
4322, 41, 42syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  ( G  o.  `' F ) )  .<_  W )
44 simp22r 1076 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  -.  Q  .<_  W )
45 nbrne2 4143 . . . . . . . . . . . . 13  |-  ( ( ( R `  ( G  o.  `' F
) )  .<_  W  /\  -.  Q  .<_  W )  ->  ( R `  ( G  o.  `' F ) )  =/= 
Q )
4645necomd 2612 . . . . . . . . . . . 12  |-  ( ( ( R `  ( G  o.  `' F
) )  .<_  W  /\  -.  Q  .<_  W )  ->  Q  =/=  ( R `  ( G  o.  `' F ) ) )
4743, 44, 46syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  Q  =/=  ( R `  ( G  o.  `' F ) ) )
48 eqid 2366 . . . . . . . . . . . 12  |-  ( LLines `  K )  =  (
LLines `  K )
498, 10, 48llni2 29772 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  Q  e.  A  /\  ( R `  ( G  o.  `' F ) )  e.  A )  /\  Q  =/=  ( R `  ( G  o.  `' F ) ) )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  e.  (
LLines `  K ) )
5018, 3, 33, 47, 49syl31anc 1186 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  e.  (
LLines `  K ) )
5110, 48llnneat 29774 . . . . . . . . . 10  |-  ( ( K  e.  HL  /\  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) )  e.  ( LLines `  K
) )  ->  -.  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) )  e.  A )
5218, 50, 51syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  -.  ( Q  .\/  ( R `  ( G  o.  `' F
) ) )  e.  A )
53 nelne2 2619 . . . . . . . . 9  |-  ( ( ( R `  ( G  o.  `' F
) )  e.  A  /\  -.  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  e.  A
)  ->  ( R `  ( G  o.  `' F ) )  =/=  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )
5433, 52, 53syl2anc 642 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  ( G  o.  `' F ) )  =/=  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )
5554adantr 451 . . . . . . 7  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  S  =  ( 0. `  K ) )  ->  ( R `  ( G  o.  `' F ) )  =/=  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )
5639, 55eqnetrd 2547 . . . . . 6  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  /\  S  =  ( 0. `  K ) )  ->  ( S  .\/  ( R `  ( G  o.  `' F
) ) )  =/=  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )
5756ex 423 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  =  ( 0. `  K
)  ->  ( S  .\/  ( R `  ( G  o.  `' F
) ) )  =/=  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) ) )
5857necon2d 2579 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( S 
.\/  ( R `  ( G  o.  `' F ) ) )  =  ( Q  .\/  ( R `  ( G  o.  `' F ) ) )  ->  S  =/=  ( 0. `  K
) ) )
5916, 58mpd 14 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  S  =/=  ( 0. `  K ) )
60 simp32 993 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  G  =/=  (  _I  |`  B ) )
616, 10, 11, 12, 13trlnidat 30433 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  G  =/=  (  _I  |`  B ) )  ->  ( R `  G )  e.  A
)
6222, 23, 60, 61syl3anc 1183 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  G )  e.  A
)
637, 8, 10hlatlej2 29636 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  P  e.  A  /\  ( R `  G )  e.  A )  -> 
( R `  G
)  .<_  ( P  .\/  ( R `  G ) ) )
6418, 2, 62, 63syl3anc 1183 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  G )  .<_  ( P 
.\/  ( R `  G ) ) )
65 simp22 990 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( Q  e.  A  /\  -.  Q  .<_  W ) )
66 simp31 992 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  F  =/=  (  _I  |`  B ) )
676, 11, 12ltrncnvnid 30387 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  `' F  =/=  (  _I  |`  B ) )
6822, 24, 66, 67syl3anc 1183 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  `' F  =/=  (  _I  |`  B ) )
696, 11, 12, 13trlcone 30988 . . . . . . . . . . 11  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  `' F  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 `' F )  /\  `' F  =/=  (  _I  |`  B ) ) )  ->  ( R `  G )  =/=  ( R `  ( G  o.  `' F
) ) )
7069necomd 2612 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  e.  T  /\  `' F  e.  T )  /\  (
( R `  G
)  =/=  ( R `
 `' F )  /\  `' F  =/=  (  _I  |`  B ) ) )  ->  ( R `  ( G  o.  `' F ) )  =/=  ( R `  G
) )
7122, 23, 26, 31, 68, 70syl122anc 1192 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  ( G  o.  `' F ) )  =/=  ( R `  G
) )
727, 11, 12, 13trlle 30444 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  ( R `  G )  .<_  W )
7322, 23, 72syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( R `  G )  .<_  W )
747, 8, 10, 11lhp2atnle 30293 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  ( R `  ( G  o.  `' F ) )  =/=  ( R `  G
) )  /\  (
( R `  ( G  o.  `' F
) )  e.  A  /\  ( R `  ( G  o.  `' F
) )  .<_  W )  /\  ( ( R `
 G )  e.  A  /\  ( R `
 G )  .<_  W ) )  ->  -.  ( R `  G
)  .<_  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )
7522, 65, 71, 33, 43, 62, 73, 74syl322anc 1211 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  -.  ( R `  G )  .<_  ( Q 
.\/  ( R `  ( G  o.  `' F ) ) ) )
76 nbrne1 4142 . . . . . . . 8  |-  ( ( ( R `  G
)  .<_  ( P  .\/  ( R `  G ) )  /\  -.  ( R `  G )  .<_  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  ->  ( P  .\/  ( R `  G
) )  =/=  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )
7764, 75, 76syl2anc 642 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( P  .\/  ( R `  G ) )  =/=  ( Q 
.\/  ( R `  ( G  o.  `' F ) ) ) )
788, 9, 36, 102atmat0 29786 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  ( R `  G )  e.  A )  /\  ( Q  e.  A  /\  ( R `  ( G  o.  `' F
) )  e.  A  /\  ( P  .\/  ( R `  G )
)  =/=  ( Q 
.\/  ( R `  ( G  o.  `' F ) ) ) ) )  ->  (
( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )  e.  A  \/  (
( P  .\/  ( R `  G )
)  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )  =  ( 0. `  K ) ) )
7918, 2, 62, 3, 33, 77, 78syl33anc 1198 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( ( P  .\/  ( R `
 G ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  e.  A  \/  ( ( P  .\/  ( R `
 G ) ) 
./\  ( Q  .\/  ( R `  ( G  o.  `' F ) ) ) )  =  ( 0. `  K
) ) )
8014eleq1i 2429 . . . . . . 7  |-  ( S  e.  A  <->  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )  e.  A )
8114eqeq1i 2373 . . . . . . 7  |-  ( S  =  ( 0. `  K )  <->  ( ( P  .\/  ( R `  G ) )  ./\  ( Q  .\/  ( R `
 ( G  o.  `' F ) ) ) )  =  ( 0.
`  K ) )
8280, 81orbi12i 507 . . . . . 6  |-  ( ( S  e.  A  \/  S  =  ( 0. `  K ) )  <->  ( (
( P  .\/  ( R `  G )
)  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )  e.  A  \/  (
( P  .\/  ( R `  G )
)  ./\  ( Q  .\/  ( R `  ( G  o.  `' F
) ) ) )  =  ( 0. `  K ) ) )
8379, 82sylibr 203 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  e.  A  \/  S  =  ( 0. `  K
) ) )
8483ord 366 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( -.  S  e.  A  ->  S  =  ( 0. `  K
) ) )
8584necon1ad 2596 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  =/=  ( 0. `  K
)  ->  S  e.  A ) )
8659, 85mpd 14 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  S  e.  A
)
87 simp21 989 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
8887, 65jca 518 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) ) )
896, 7, 8, 9, 10, 11, 12, 13, 14, 36cdlemh2 31076 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G )
) )  ->  ( S  ./\  W )  =  ( 0. `  K
) )
9088, 89syld3an2 1230 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  ./\  W )  =  ( 0.
`  K ) )
917, 9, 36, 10, 11lhpmatb 30291 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  A
)  ->  ( -.  S  .<_  W  <->  ( S  ./\ 
W )  =  ( 0. `  K ) ) )
9218, 21, 86, 91syl21anc 1182 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( -.  S  .<_  W  <->  ( S  ./\  W )  =  ( 0.
`  K ) ) )
9390, 92mpbird 223 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  -.  S  .<_  W )
9486, 93jca 518 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W )  /\  Q  .<_  ( P  .\/  ( R `  F )
) )  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  ( R `  F )  =/=  ( R `  G ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   class class class wbr 4125    _I cid 4407   `'ccnv 4791    |` cres 4794    o. ccom 4796   ` cfv 5358  (class class class)co 5981   Basecbs 13356   lecple 13423   joincjn 14288   meetcmee 14289   0.cp0 14353   OLcol 29435   Atomscatm 29524   HLchlt 29611   LLinesclln 29751   LHypclh 30244   LTrncltrn 30361   trLctrl 30418
This theorem is referenced by:  cdlemi  31080  cdlemki  31101  cdlemksv2  31107  cdlemk16a  31116
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-undef 6440  df-riota 6446  df-map 6917  df-poset 14290  df-plt 14302  df-lub 14318  df-glb 14319  df-join 14320  df-meet 14321  df-p0 14355  df-p1 14356  df-lat 14362  df-clat 14424  df-oposet 29437  df-ol 29439  df-oml 29440  df-covers 29527  df-ats 29528  df-atl 29559  df-cvlat 29583  df-hlat 29612  df-llines 29758  df-lplanes 29759  df-lvols 29760  df-lines 29761  df-psubsp 29763  df-pmap 29764  df-padd 30056  df-lhyp 30248  df-laut 30249  df-ldil 30364  df-ltrn 30365  df-trl 30419
  Copyright terms: Public domain W3C validator