Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk2 Unicode version

Theorem cdlemk2 30948
Description: Part of proof of Lemma K of [Crawley] p. 118. (Contributed by NM, 22-Jun-2013.)
Hypotheses
Ref Expression
cdlemk.b  |-  B  =  ( Base `  K
)
cdlemk.l  |-  .<_  =  ( le `  K )
cdlemk.j  |-  .\/  =  ( join `  K )
cdlemk.a  |-  A  =  ( Atoms `  K )
cdlemk.h  |-  H  =  ( LHyp `  K
)
cdlemk.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
cdlemk2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )

Proof of Theorem cdlemk2
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp2r 984 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G  e.  T )
3 simp2l 983 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F  e.  T )
4 cdlemk.h . . . . . 6  |-  H  =  ( LHyp `  K
)
5 cdlemk.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
64, 5ltrncnv 30262 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
71, 3, 6syl2anc 643 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  `' F  e.  T )
84, 5ltrnco 30835 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  `' F  e.  T
)  ->  ( G  o.  `' F )  e.  T
)
91, 2, 7, 8syl3anc 1184 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  `' F )  e.  T
)
10 cdlemk.l . . . . 5  |-  .<_  =  ( le `  K )
11 cdlemk.a . . . . 5  |-  A  =  ( Atoms `  K )
1210, 11, 4, 5ltrnel 30255 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
13123adant2r 1179 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )
14 cdlemk.j . . . 4  |-  .\/  =  ( join `  K )
15 cdlemk.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
1610, 14, 11, 4, 5, 15trljat3 30284 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( G  o.  `' F )  e.  T  /\  ( ( F `  P )  e.  A  /\  -.  ( F `  P )  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( ( G  o.  `' F ) `
 ( F `  P ) )  .\/  ( R `  ( G  o.  `' F ) ) ) )
171, 9, 13, 16syl3anc 1184 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( ( G  o.  `' F ) `
 ( F `  P ) )  .\/  ( R `  ( G  o.  `' F ) ) ) )
18 simp3l 985 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
1910, 11, 4, 5ltrncoval 30261 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( G  o.  `' F )  e.  T  /\  F  e.  T )  /\  P  e.  A )  ->  (
( ( G  o.  `' F )  o.  F
) `  P )  =  ( ( G  o.  `' F ) `
 ( F `  P ) ) )
201, 9, 3, 18, 19syl121anc 1189 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G  o.  `' F )  o.  F
) `  P )  =  ( ( G  o.  `' F ) `
 ( F `  P ) ) )
21 coass 5330 . . . . . 6  |-  ( ( G  o.  `' F
)  o.  F )  =  ( G  o.  ( `' F  o.  F
) )
22 cdlemk.b . . . . . . . . . . 11  |-  B  =  ( Base `  K
)
2322, 4, 5ltrn1o 30240 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F : B
-1-1-onto-> B )
241, 3, 23syl2anc 643 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  F : B
-1-1-onto-> B )
25 f1ococnv1 5646 . . . . . . . . 9  |-  ( F : B -1-1-onto-> B  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
2624, 25syl 16 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( `' F  o.  F )  =  (  _I  |`  B ) )
2726coeq2d 4977 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  ( `' F  o.  F ) )  =  ( G  o.  (  _I  |`  B ) ) )
2822, 4, 5ltrn1o 30240 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  G : B
-1-1-onto-> B )
291, 2, 28syl2anc 643 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  G : B
-1-1-onto-> B )
30 f1of 5616 . . . . . . . 8  |-  ( G : B -1-1-onto-> B  ->  G : B
--> B )
31 fcoi1 5559 . . . . . . . 8  |-  ( G : B --> B  -> 
( G  o.  (  _I  |`  B ) )  =  G )
3229, 30, 313syl 19 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  (  _I  |`  B ) )  =  G )
3327, 32eqtrd 2421 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( G  o.  ( `' F  o.  F ) )  =  G )
3421, 33syl5eq 2433 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G  o.  `' F
)  o.  F )  =  G )
3534fveq1d 5672 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G  o.  `' F )  o.  F
) `  P )  =  ( G `  P ) )
3620, 35eqtr3d 2423 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G  o.  `' F
) `  ( F `  P ) )  =  ( G `  P
) )
3736oveq1d 6037 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( (
( G  o.  `' F ) `  ( F `  P )
)  .\/  ( R `  ( G  o.  `' F ) ) )  =  ( ( G `
 P )  .\/  ( R `  ( G  o.  `' F ) ) ) )
3817, 37eqtr2d 2422 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( F  e.  T  /\  G  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( G `  P )  .\/  ( R `  ( G  o.  `' F
) ) )  =  ( ( F `  P )  .\/  ( R `  ( G  o.  `' F ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   class class class wbr 4155    _I cid 4436   `'ccnv 4819    |` cres 4822    o. ccom 4824   -->wf 5392   -1-1-onto->wf1o 5395   ` cfv 5396  (class class class)co 6022   Basecbs 13398   lecple 13465   joincjn 14330   Atomscatm 29380   HLchlt 29467   LHypclh 30100   LTrncltrn 30217   trLctrl 30274
This theorem is referenced by:  cdlemk5  30952  cdlemk5u  30977
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-undef 6481  df-riota 6487  df-map 6958  df-poset 14332  df-plt 14344  df-lub 14360  df-glb 14361  df-join 14362  df-meet 14363  df-p0 14397  df-p1 14398  df-lat 14404  df-clat 14466  df-oposet 29293  df-ol 29295  df-oml 29296  df-covers 29383  df-ats 29384  df-atl 29415  df-cvlat 29439  df-hlat 29468  df-llines 29614  df-lplanes 29615  df-lvols 29616  df-lines 29617  df-psubsp 29619  df-pmap 29620  df-padd 29912  df-lhyp 30104  df-laut 30105  df-ldil 30220  df-ltrn 30221  df-trl 30275
  Copyright terms: Public domain W3C validator