Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk21N Unicode version

Theorem cdlemk21N 31121
Description: Part of proof of Lemma K of [Crawley] p. 118. Lines 26-27, p. 119 for i=0 and j=1. (Contributed by NM, 5-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk1.b  |-  B  =  ( Base `  K
)
cdlemk1.l  |-  .<_  =  ( le `  K )
cdlemk1.j  |-  .\/  =  ( join `  K )
cdlemk1.m  |-  ./\  =  ( meet `  K )
cdlemk1.a  |-  A  =  ( Atoms `  K )
cdlemk1.h  |-  H  =  ( LHyp `  K
)
cdlemk1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk1.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk1.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk1.o  |-  O  =  ( S `  D
)
cdlemk1.u  |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
Assertion
Ref Expression
cdlemk21N  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( ( S `  G ) `  P
)  =  ( ( U `  G ) `
 P ) )
Distinct variable groups:    f, i,  ./\    .<_ , i    .\/ , f, i    A, i    D, f, i    f, F, i    i, H    i, K    f, N, i    P, f, i    R, f, i    T, f, i    f, W, i    ./\ , e    .\/ , e    D, e, j    e, G, j   
e, O    P, e    R, e    T, e    e, W    ./\ , j    .<_ , j    .\/ , j    A, j    D, j    j, F   
j, H    j, K    j, N    j, O    P, j    R, j    T, j   
j, W    e, F    i, G, f
Allowed substitution hints:    A( e, f)    B( e, f, i, j)    S( e, f, i, j)    U( e, f, i, j)    H( e, f)    K( e, f)    .<_ ( e, f)    N( e)    O( f, i)

Proof of Theorem cdlemk21N
StepHypRef Expression
1 simp11 986 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simp21r 1074 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  ->  G  e.  T )
3 simp22 990 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( P  e.  A  /\  -.  P  .<_  W ) )
4 cdlemk1.l . . . . 5  |-  .<_  =  ( le `  K )
5 cdlemk1.j . . . . 5  |-  .\/  =  ( join `  K )
6 cdlemk1.a . . . . 5  |-  A  =  ( Atoms `  K )
7 cdlemk1.h . . . . 5  |-  H  =  ( LHyp `  K
)
8 cdlemk1.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemk1.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
104, 5, 6, 7, 8, 9trljat1 30414 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( R `  G
) )  =  ( P  .\/  ( G `
 P ) ) )
111, 2, 3, 10syl3anc 1183 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( P  .\/  ( R `  G )
)  =  ( P 
.\/  ( G `  P ) ) )
12 cdlemk1.o . . . . . 6  |-  O  =  ( S `  D
)
1312fveq1i 5633 . . . . 5  |-  ( O `
 P )  =  ( ( S `  D ) `  P
)
1413a1i 10 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( O `  P
)  =  ( ( S `  D ) `
 P ) )
15 simp13 988 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  ->  D  e.  T )
167, 8, 9trlcocnv 30968 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T  /\  D  e.  T
)  ->  ( R `  ( G  o.  `' D ) )  =  ( R `  ( D  o.  `' G
) ) )
171, 2, 15, 16syl3anc 1183 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( R `  ( G  o.  `' D
) )  =  ( R `  ( D  o.  `' G ) ) )
1814, 17oveq12d 5999 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( ( O `  P )  .\/  ( R `  ( G  o.  `' D ) ) )  =  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( D  o.  `' G ) ) ) )
1911, 18oveq12d 5999 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( ( P  .\/  ( R `  G ) )  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) )  =  ( ( P 
.\/  ( G `  P ) )  ./\  ( ( ( S `
 D ) `  P )  .\/  ( R `  ( D  o.  `' G ) ) ) ) )
20 simp23 991 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( R `  F
)  =  ( R `
 N ) )
21 simp12 987 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  ->  F  e.  T )
22 simp21l 1073 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  ->  N  e.  T )
23 simp3r1 1064 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( R `  D
)  =/=  ( R `
 F ) )
24 simp3r2 1065 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( R `  G
)  =/=  ( R `
 D ) )
2524necomd 2612 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( R `  D
)  =/=  ( R `
 G ) )
2623, 25jca 518 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( ( R `  D )  =/=  ( R `  F )  /\  ( R `  D
)  =/=  ( R `
 G ) ) )
27 simp3l1 1061 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  ->  F  =/=  (  _I  |`  B ) )
28 simp3l3 1063 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  ->  G  =/=  (  _I  |`  B ) )
29 simp3l2 1062 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  ->  D  =/=  (  _I  |`  B ) )
3027, 28, 293jca 1133 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) ) )
31 cdlemk1.b . . . 4  |-  B  =  ( Base `  K
)
32 cdlemk1.m . . . 4  |-  ./\  =  ( meet `  K )
33 cdlemk1.s . . . 4  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
34 cdlemk1.u . . . 4  |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
3531, 4, 5, 32, 6, 7, 8, 9, 33, 12, 34cdlemkuv2 31115 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R `  F )  =  ( R `  N )  /\  G  e.  T )  /\  ( F  e.  T  /\  D  e.  T  /\  N  e.  T )  /\  ( ( ( R `
 D )  =/=  ( R `  F
)  /\  ( R `  D )  =/=  ( R `  G )
)  /\  ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( P  e.  A  /\  -.  P  .<_  W ) ) )  ->  ( ( U `  G ) `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) ) )
361, 20, 2, 21, 15, 22, 26, 30, 3, 35syl333anc 1215 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( ( U `  G ) `  P
)  =  ( ( P  .\/  ( R `
 G ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( G  o.  `' D ) ) ) ) )
3722, 15jca 518 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( N  e.  T  /\  D  e.  T
) )
38 simp3r3 1066 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( R `  G
)  =/=  ( R `
 F ) )
3938, 23jca 518 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( ( R `  G )  =/=  ( R `  F )  /\  ( R `  D
)  =/=  ( R `
 F ) ) )
4031, 4, 5, 6, 7, 8, 9, 32, 33cdlemk12 31098 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T )  /\  (
( N  e.  T  /\  D  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B ) )  /\  ( ( R `  G )  =/=  ( R `  F )  /\  ( R `  D )  =/=  ( R `  F
) )  /\  ( R `  G )  =/=  ( R `  D
) ) )  -> 
( ( S `  G ) `  P
)  =  ( ( P  .\/  ( G `
 P ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( D  o.  `' G ) ) ) ) )
411, 21, 2, 37, 3, 20, 30, 39, 24, 40syl333anc 1215 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( ( S `  G ) `  P
)  =  ( ( P  .\/  ( G `
 P ) ) 
./\  ( ( ( S `  D ) `
 P )  .\/  ( R `  ( D  o.  `' G ) ) ) ) )
4219, 36, 413eqtr4rd 2409 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  D  e.  T )  /\  (
( N  e.  T  /\  G  e.  T
)  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) )  /\  ( ( F  =/=  (  _I  |`  B )  /\  D  =/=  (  _I  |`  B )  /\  G  =/=  (  _I  |`  B ) )  /\  ( ( R `  D )  =/=  ( R `  F )  /\  ( R `  G )  =/=  ( R `  D
)  /\  ( R `  G )  =/=  ( R `  F )
) ) )  -> 
( ( S `  G ) `  P
)  =  ( ( U `  G ) `
 P ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    =/= wne 2529   class class class wbr 4125    e. cmpt 4179    _I cid 4407   `'ccnv 4791    |` cres 4794    o. ccom 4796   ` cfv 5358  (class class class)co 5981   iota_crio 6439   Basecbs 13356   lecple 13423   joincjn 14288   meetcmee 14289   Atomscatm 29512   HLchlt 29599   LHypclh 30232   LTrncltrn 30349   trLctrl 30406
This theorem is referenced by:  cdlemk21-2N  31139
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-rep 4233  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-nel 2532  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-iun 4009  df-iin 4010  df-br 4126  df-opab 4180  df-mpt 4181  df-id 4412  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-oprab 5985  df-mpt2 5986  df-1st 6249  df-2nd 6250  df-undef 6440  df-riota 6446  df-map 6917  df-poset 14290  df-plt 14302  df-lub 14318  df-glb 14319  df-join 14320  df-meet 14321  df-p0 14355  df-p1 14356  df-lat 14362  df-clat 14424  df-oposet 29425  df-ol 29427  df-oml 29428  df-covers 29515  df-ats 29516  df-atl 29547  df-cvlat 29571  df-hlat 29600  df-llines 29746  df-lplanes 29747  df-lvols 29748  df-lines 29749  df-psubsp 29751  df-pmap 29752  df-padd 30044  df-lhyp 30236  df-laut 30237  df-ldil 30352  df-ltrn 30353  df-trl 30407
  Copyright terms: Public domain W3C validator