Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk39s Unicode version

Theorem cdlemk39s 31180
Description: Substitution version of cdlemk39 31157. TODO: Can any commonality with cdlemk35s 31178 be exploited? (Contributed by NM, 23-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b  |-  B  =  ( Base `  K
)
cdlemk5.l  |-  .<_  =  ( le `  K )
cdlemk5.j  |-  .\/  =  ( join `  K )
cdlemk5.m  |-  ./\  =  ( meet `  K )
cdlemk5.a  |-  A  =  ( Atoms `  K )
cdlemk5.h  |-  H  =  ( LHyp `  K
)
cdlemk5.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk5.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk5.z  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
cdlemk5.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
cdlemk5.x  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
Assertion
Ref Expression
cdlemk39s  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  [_ G  / 
g ]_ X )  .<_  ( R `  G ) )
Distinct variable groups:    ./\ , g    .\/ , g    B, g    P, g    R, g    T, g    g, Z    g, b, G, z    ./\ , b, z    .<_ , b    z,
g,  .<_    .\/ , b, z    A, b, g, z    B, b, z    F, b, g, z   
z, G    H, b,
g, z    K, b,
g, z    N, b,
g, z    P, b,
z    R, b, z    T, b, z    W, b, g, z    z, Y    G, b
Allowed substitution hints:    X( z, g, b)    Y( g, b)    Z( z, b)

Proof of Theorem cdlemk39s
StepHypRef Expression
1 simp22l 1074 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  G  e.  T )
2 cdlemk5.b . . . . . 6  |-  B  =  ( Base `  K
)
3 cdlemk5.l . . . . . 6  |-  .<_  =  ( le `  K )
4 cdlemk5.j . . . . . 6  |-  .\/  =  ( join `  K )
5 cdlemk5.m . . . . . 6  |-  ./\  =  ( meet `  K )
6 cdlemk5.a . . . . . 6  |-  A  =  ( Atoms `  K )
7 cdlemk5.h . . . . . 6  |-  H  =  ( LHyp `  K
)
8 cdlemk5.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
9 cdlemk5.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
10 cdlemk5.z . . . . . 6  |-  Z  =  ( ( P  .\/  ( R `  b ) )  ./\  ( ( N `  P )  .\/  ( R `  (
b  o.  `' F
) ) ) )
11 cdlemk5.y . . . . . 6  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
12 cdlemk5.x . . . . . 6  |-  X  =  ( iota_ z  e.  T A. b  e.  T  ( ( b  =/=  (  _I  |`  B )  /\  ( R `  b )  =/=  ( R `  F )  /\  ( R `  b
)  =/=  ( R `
 g ) )  ->  ( z `  P )  =  Y ) )
132, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12cdlemk39 31157 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  X )  .<_  ( R `  g
) )
1413sbcth 3081 . . . 4  |-  ( G  e.  T  ->  [. G  /  g ]. (
( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  X )  .<_  ( R `  g
) ) )
15 sbcimg 3108 . . . 4  |-  ( G  e.  T  ->  ( [. G  /  g ]. ( ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  X )  .<_  ( R `  g
) )  <->  ( [. G  /  g ]. (
( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [. G  /  g ]. ( R `  X )  .<_  ( R `  g
) ) ) )
1614, 15mpbid 201 . . 3  |-  ( G  e.  T  ->  ( [. G  /  g ]. ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  [. G  /  g ]. ( R `  X )  .<_  ( R `  g
) ) )
17 eleq1 2418 . . . . . . 7  |-  ( g  =  G  ->  (
g  e.  T  <->  G  e.  T ) )
18 neeq1 2529 . . . . . . 7  |-  ( g  =  G  ->  (
g  =/=  (  _I  |`  B )  <->  G  =/=  (  _I  |`  B ) ) )
1917, 18anbi12d 691 . . . . . 6  |-  ( g  =  G  ->  (
( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  <-> 
( G  e.  T  /\  G  =/=  (  _I  |`  B ) ) ) )
20193anbi2d 1257 . . . . 5  |-  ( g  =  G  ->  (
( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  <->  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T ) ) )
21203anbi2d 1257 . . . 4  |-  ( g  =  G  ->  (
( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  <->  ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) ) ) )
2221sbcieg 3099 . . 3  |-  ( G  e.  T  ->  ( [. G  /  g ]. ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  <->  ( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) ) ) )
23 sbcbr12g 4152 . . . 4  |-  ( G  e.  T  ->  ( [. G  /  g ]. ( R `  X
)  .<_  ( R `  g )  <->  [_ G  / 
g ]_ ( R `  X )  .<_  [_ G  /  g ]_ ( R `  g )
) )
24 csbfv2g 5617 . . . . 5  |-  ( G  e.  T  ->  [_ G  /  g ]_ ( R `  X )  =  ( R `  [_ G  /  g ]_ X ) )
25 csbfvg 5618 . . . . 5  |-  ( G  e.  T  ->  [_ G  /  g ]_ ( R `  g )  =  ( R `  G ) )
2624, 25breq12d 4115 . . . 4  |-  ( G  e.  T  ->  ( [_ G  /  g ]_ ( R `  X
)  .<_  [_ G  /  g ]_ ( R `  g
)  <->  ( R `  [_ G  /  g ]_ X )  .<_  ( R `
 G ) ) )
2723, 26bitrd 244 . . 3  |-  ( G  e.  T  ->  ( [. G  /  g ]. ( R `  X
)  .<_  ( R `  g )  <->  ( R `  [_ G  /  g ]_ X )  .<_  ( R `
 G ) ) )
2816, 22, 273imtr3d 258 . 2  |-  ( G  e.  T  ->  (
( ( K  e.  HL  /\  W  e.  H )  /\  (
( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  [_ G  / 
g ]_ X )  .<_  ( R `  G ) ) )
291, 28mpcom 32 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  ( G  e.  T  /\  G  =/=  (  _I  |`  B ) )  /\  N  e.  T )  /\  (
( P  e.  A  /\  -.  P  .<_  W )  /\  ( R `  F )  =  ( R `  N ) ) )  ->  ( R `  [_ G  / 
g ]_ X )  .<_  ( R `  G ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   A.wral 2619   [.wsbc 3067   [_csb 3157   class class class wbr 4102    _I cid 4383   `'ccnv 4767    |` cres 4770    o. ccom 4772   ` cfv 5334  (class class class)co 5942   iota_crio 6381   Basecbs 13239   lecple 13306   joincjn 14171   meetcmee 14172   Atomscatm 29505   HLchlt 29592   LHypclh 30225   LTrncltrn 30342   trLctrl 30399
This theorem is referenced by:  cdlemk39s-id  31181  cdlemk51  31194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-iin 3987  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-undef 6382  df-riota 6388  df-map 6859  df-poset 14173  df-plt 14185  df-lub 14201  df-glb 14202  df-join 14203  df-meet 14204  df-p0 14238  df-p1 14239  df-lat 14245  df-clat 14307  df-oposet 29418  df-ol 29420  df-oml 29421  df-covers 29508  df-ats 29509  df-atl 29540  df-cvlat 29564  df-hlat 29593  df-llines 29739  df-lplanes 29740  df-lvols 29741  df-lines 29742  df-psubsp 29744  df-pmap 29745  df-padd 30037  df-lhyp 30229  df-laut 30230  df-ldil 30345  df-ltrn 30346  df-trl 30400
  Copyright terms: Public domain W3C validator