Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk54 Unicode version

Theorem cdlemk54 31147
 Description: Part of proof of Lemma K of [Crawley] p. 118. Line 10, p. 120. , stand for g, h. represents tau. (Contributed by NM, 26-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b
cdlemk5.l
cdlemk5.j
cdlemk5.m
cdlemk5.a
cdlemk5.h
cdlemk5.t
cdlemk5.r
cdlemk5.z
cdlemk5.y
cdlemk5.x
Assertion
Ref Expression
cdlemk54
Distinct variable groups:   ,   ,   ,   ,   ,   ,   ,   ,,,   ,,   ,   ,,   ,,   ,,,   ,,   ,,,   ,   ,,,   ,,,   ,,,   ,,   ,,   ,,   ,,,   ,   ,   ,,,   ,,,
Allowed substitution hints:   ()   ()   ()   ()   ()   ()   ()   ()   ()   ()   ()   ()   ()   ()   ()   (,,,)   (,,)   (,,)

Proof of Theorem cdlemk54
StepHypRef Expression
1 coass 5191 . . 3
2 csbeq1 3084 . . 3
31, 2ax-mp 8 . 2
4 simp1 955 . . 3
5 simp21 988 . . 3
6 simp1l 979 . . . 4
7 simp22 989 . . . 4
8 simp31l 1078 . . . 4
9 cdlemk5.h . . . . 5
10 cdlemk5.t . . . . 5
119, 10ltrnco 30908 . . . 4
126, 7, 8, 11syl3anc 1182 . . 3
13 simp23 990 . . 3
14 simp32 992 . . 3
15 simp333 1110 . . . 4
1615necomd 2529 . . 3
17 cdlemk5.b . . . 4
18 cdlemk5.l . . . 4
19 cdlemk5.j . . . 4
20 cdlemk5.m . . . 4
21 cdlemk5.a . . . 4
22 cdlemk5.r . . . 4
23 cdlemk5.z . . . 4
24 cdlemk5.y . . . 4
25 cdlemk5.x . . . 4
2617, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 31146 . . 3
274, 5, 12, 13, 14, 16, 26syl132anc 1200 . 2
28 simp2 956 . . . 4
299, 10ltrnco 30908 . . . . 5
306, 8, 14, 29syl3anc 1182 . . . 4
31 simp31r 1079 . . . . 5
32 simp332 1109 . . . . . . . 8
3332, 31neeqtrd 2468 . . . . . . 7
3433necomd 2529 . . . . . 6
35 simp331 1108 . . . . . 6
3617, 9, 10, 22trlcone 30917 . . . . . 6
376, 8, 14, 34, 35, 36syl122anc 1191 . . . . 5
3831, 37eqnetrd 2464 . . . 4
3917, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 31146 . . . 4
404, 28, 30, 38, 39syl112anc 1186 . . 3
4117, 18, 19, 20, 21, 9, 10, 22, 23, 24, 25cdlemk53 31146 . . . . . 6
424, 5, 8, 13, 14, 34, 41syl132anc 1200 . . . . 5
4342coeq2d 4846 . . . 4
44 coass 5191 . . . 4
4543, 44syl6eqr 2333 . . 3
4640, 45eqtrd 2315 . 2
473, 27, 463eqtr3a 2339 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 358   w3a 934   wceq 1623   wcel 1684   wne 2446  wral 2543  csb 3081   class class class wbr 4023   cid 4304  ccnv 4688   cres 4691   ccom 4693  cfv 5255  (class class class)co 5858  crio 6297  cbs 13148  cple 13215  cjn 14078  cmee 14079  catm 29453  chlt 29540  clh 30173  cltrn 30290  ctrl 30347 This theorem is referenced by:  cdlemk55a  31148 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-llines 29687  df-lplanes 29688  df-lvols 29689  df-lines 29690  df-psubsp 29692  df-pmap 29693  df-padd 29985  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348
 Copyright terms: Public domain W3C validator