Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkuvN Unicode version

Theorem cdlemkuvN 31675
Description: Part of proof of Lemma K of [Crawley] p. 118. Value of the sigma1 (p) function  U. (Contributed by NM, 2-Jul-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemk1.b  |-  B  =  ( Base `  K
)
cdlemk1.l  |-  .<_  =  ( le `  K )
cdlemk1.j  |-  .\/  =  ( join `  K )
cdlemk1.m  |-  ./\  =  ( meet `  K )
cdlemk1.a  |-  A  =  ( Atoms `  K )
cdlemk1.h  |-  H  =  ( LHyp `  K
)
cdlemk1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdlemk1.r  |-  R  =  ( ( trL `  K
) `  W )
cdlemk1.s  |-  S  =  ( f  e.  T  |->  ( iota_ i  e.  T
( i `  P
)  =  ( ( P  .\/  ( R `
 f ) ) 
./\  ( ( N `
 P )  .\/  ( R `  ( f  o.  `' F ) ) ) ) ) )
cdlemk1.o  |-  O  =  ( S `  D
)
cdlemk1.u  |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
Assertion
Ref Expression
cdlemkuvN  |-  ( G  e.  T  ->  ( U `  G )  =  ( iota_ j  e.  T ( j `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) ) ) )
Distinct variable groups:    f, i,  ./\    .<_ , i    .\/ , f, i    A, i    D, f, i    f, F, i    i, H    i, K    f, N, i    P, f, i    R, f, i    T, f, i    f, W, i    ./\ , e    .\/ , e    D, e    e, j, G    e, O    P, e    R, e    T, e    e, W
Allowed substitution hints:    A( e, f, j)    B( e, f, i, j)    D( j)    P( j)    R( j)    S( e, f, i, j)    T( j)    U( e, f, i, j)    F( e, j)    G( f, i)    H( e, f, j)    .\/ ( j)    K( e, f, j)    .<_ ( e, f, j)    ./\ ( j)    N( e, j)    O( f, i, j)    W( j)

Proof of Theorem cdlemkuvN
StepHypRef Expression
1 cdlemk1.b . 2  |-  B  =  ( Base `  K
)
2 cdlemk1.l . 2  |-  .<_  =  ( le `  K )
3 cdlemk1.j . 2  |-  .\/  =  ( join `  K )
4 cdlemk1.a . 2  |-  A  =  ( Atoms `  K )
5 cdlemk1.h . 2  |-  H  =  ( LHyp `  K
)
6 cdlemk1.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
7 cdlemk1.r . 2  |-  R  =  ( ( trL `  K
) `  W )
8 cdlemk1.m . 2  |-  ./\  =  ( meet `  K )
9 cdlemk1.u . 2  |-  U  =  ( e  e.  T  |->  ( iota_ j  e.  T
( j `  P
)  =  ( ( P  .\/  ( R `
 e ) ) 
./\  ( ( O `
 P )  .\/  ( R `  ( e  o.  `' D ) ) ) ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9cdlemksv 31655 1  |-  ( G  e.  T  ->  ( U `  G )  =  ( iota_ j  e.  T ( j `  P )  =  ( ( P  .\/  ( R `  G )
)  ./\  ( ( O `  P )  .\/  ( R `  ( G  o.  `' D
) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696    e. cmpt 4093   `'ccnv 4704    o. ccom 4709   ` cfv 5271  (class class class)co 5874   iota_crio 6313   Basecbs 13164   lecple 13231   joincjn 14094   meetcmee 14095   Atomscatm 30075   LHypclh 30795   LTrncltrn 30912   trLctrl 30969
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-riota 6320
  Copyright terms: Public domain W3C validator