Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleml1N Unicode version

Theorem cdleml1N 31165
Description: Part of proof of Lemma L of [Crawley] p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleml1.b  |-  B  =  ( Base `  K
)
cdleml1.h  |-  H  =  ( LHyp `  K
)
cdleml1.t  |-  T  =  ( ( LTrn `  K
) `  W )
cdleml1.r  |-  R  =  ( ( trL `  K
) `  W )
cdleml1.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
cdleml1N  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( R `  ( U `  f
) )  =  ( R `  ( V `
 f ) ) )

Proof of Theorem cdleml1N
StepHypRef Expression
1 simp1 955 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simp21 988 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  U  e.  E )
3 simp23 990 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  f  e.  T )
4 eqid 2283 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
5 cdleml1.h . . . . 5  |-  H  =  ( LHyp `  K
)
6 cdleml1.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
7 cdleml1.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
8 cdleml1.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
94, 5, 6, 7, 8tendotp 30950 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  f  e.  T
)  ->  ( R `  ( U `  f
) ) ( le
`  K ) ( R `  f ) )
101, 2, 3, 9syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( R `  ( U `  f
) ) ( le
`  K ) ( R `  f ) )
11 simp1l 979 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  K  e.  HL )
12 hlatl 29550 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
1311, 12syl 15 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  K  e.  AtLat
)
145, 6, 8tendocl 30956 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  f  e.  T
)  ->  ( U `  f )  e.  T
)
151, 2, 3, 14syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( U `  f )  e.  T
)
16 simp32 992 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( U `  f )  =/=  (  _I  |`  B ) )
17 cdleml1.b . . . . . 6  |-  B  =  ( Base `  K
)
18 eqid 2283 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
1917, 18, 5, 6, 7trlnidat 30362 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  f )  e.  T  /\  ( U `  f
)  =/=  (  _I  |`  B ) )  -> 
( R `  ( U `  f )
)  e.  ( Atoms `  K ) )
201, 15, 16, 19syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( R `  ( U `  f
) )  e.  (
Atoms `  K ) )
21 simp31 991 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  f  =/=  (  _I  |`  B ) )
2217, 18, 5, 6, 7trlnidat 30362 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T  /\  f  =/=  (  _I  |`  B ) )  ->  ( R `  f )  e.  (
Atoms `  K ) )
231, 3, 21, 22syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( R `  f )  e.  (
Atoms `  K ) )
244, 18atcmp 29501 . . . 4  |-  ( ( K  e.  AtLat  /\  ( R `  ( U `  f ) )  e.  ( Atoms `  K )  /\  ( R `  f
)  e.  ( Atoms `  K ) )  -> 
( ( R `  ( U `  f ) ) ( le `  K ) ( R `
 f )  <->  ( R `  ( U `  f
) )  =  ( R `  f ) ) )
2513, 20, 23, 24syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( ( R `  ( U `  f ) ) ( le `  K ) ( R `  f
)  <->  ( R `  ( U `  f ) )  =  ( R `
 f ) ) )
2610, 25mpbid 201 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( R `  ( U `  f
) )  =  ( R `  f ) )
27 simp22 989 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  V  e.  E )
284, 5, 6, 7, 8tendotp 30950 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  f  e.  T
)  ->  ( R `  ( V `  f
) ) ( le
`  K ) ( R `  f ) )
291, 27, 3, 28syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( R `  ( V `  f
) ) ( le
`  K ) ( R `  f ) )
305, 6, 8tendocl 30956 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  f  e.  T
)  ->  ( V `  f )  e.  T
)
311, 27, 3, 30syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( V `  f )  e.  T
)
32 simp33 993 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( V `  f )  =/=  (  _I  |`  B ) )
3317, 18, 5, 6, 7trlnidat 30362 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( V `  f )  e.  T  /\  ( V `  f
)  =/=  (  _I  |`  B ) )  -> 
( R `  ( V `  f )
)  e.  ( Atoms `  K ) )
341, 31, 32, 33syl3anc 1182 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( R `  ( V `  f
) )  e.  (
Atoms `  K ) )
354, 18atcmp 29501 . . . 4  |-  ( ( K  e.  AtLat  /\  ( R `  ( V `  f ) )  e.  ( Atoms `  K )  /\  ( R `  f
)  e.  ( Atoms `  K ) )  -> 
( ( R `  ( V `  f ) ) ( le `  K ) ( R `
 f )  <->  ( R `  ( V `  f
) )  =  ( R `  f ) ) )
3613, 34, 23, 35syl3anc 1182 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( ( R `  ( V `  f ) ) ( le `  K ) ( R `  f
)  <->  ( R `  ( V `  f ) )  =  ( R `
 f ) ) )
3729, 36mpbid 201 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( R `  ( V `  f
) )  =  ( R `  f ) )
3826, 37eqtr4d 2318 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  f  e.  T )  /\  (
f  =/=  (  _I  |`  B )  /\  ( U `  f )  =/=  (  _I  |`  B )  /\  ( V `  f )  =/=  (  _I  |`  B ) ) )  ->  ( R `  ( U `  f
) )  =  ( R `  ( V `
 f ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023    _I cid 4304    |` cres 4691   ` cfv 5255   Basecbs 13148   lecple 13215   Atomscatm 29453   AtLatcal 29454   HLchlt 29540   LHypclh 30173   LTrncltrn 30290   trLctrl 30347   TEndoctendo 30941
This theorem is referenced by:  cdleml2N  31166
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-undef 6298  df-riota 6304  df-map 6774  df-poset 14080  df-plt 14092  df-lub 14108  df-glb 14109  df-join 14110  df-meet 14111  df-p0 14145  df-p1 14146  df-lat 14152  df-clat 14214  df-oposet 29366  df-ol 29368  df-oml 29369  df-covers 29456  df-ats 29457  df-atl 29488  df-cvlat 29512  df-hlat 29541  df-lhyp 30177  df-laut 30178  df-ldil 30293  df-ltrn 30294  df-trl 30348  df-tendo 30944
  Copyright terms: Public domain W3C validator