MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  celaront Unicode version

Theorem celaront 2245
Description: "Celaront", one of the syllogisms of Aristotelian logic. No  ph is  ps, all  ch is  ph, and some  ch exist, therefore some  ch is not  ps. (In Aristotelian notation, EAO-1: MeP and SaM therefore SoP.) For example, given "No reptiles have fur", "All snakes are reptiles.", and "Snakes exist.", prove "Some snakes have no fur". Note the existence hypothesis. Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
celaront.maj  |-  A. x
( ph  ->  -.  ps )
celaront.min  |-  A. x
( ch  ->  ph )
celaront.e  |-  E. x ch
Assertion
Ref Expression
celaront  |-  E. x
( ch  /\  -.  ps )

Proof of Theorem celaront
StepHypRef Expression
1 celaront.maj . 2  |-  A. x
( ph  ->  -.  ps )
2 celaront.min . 2  |-  A. x
( ch  ->  ph )
3 celaront.e . 2  |-  E. x ch
41, 2, 3barbari 2244 1  |-  E. x
( ch  /\  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1527   E.wex 1528
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-11 1715
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1529
  Copyright terms: Public domain W3C validator