Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsal Structured version   Unicode version

Theorem ceqsal 2973
 Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993.)
Hypotheses
Ref Expression
ceqsal.1
ceqsal.2
ceqsal.3
Assertion
Ref Expression
ceqsal
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem ceqsal
StepHypRef Expression
1 ceqsal.2 . 2
2 ceqsal.1 . . 3
3 ceqsal.3 . . 3
42, 3ceqsalg 2972 . 2
51, 4ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549  wnf 1553   wceq 1652   wcel 1725  cvv 2948 This theorem is referenced by:  ceqsalv  2974  aomclem6  27125 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-v 2950
 Copyright terms: Public domain W3C validator