MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsalt Unicode version

Theorem ceqsalt 2823
Description: Closed theorem version of ceqsalg 2825. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 10-Oct-2016.)
Assertion
Ref Expression
ceqsalt  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  <->  ps )
)
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    V( x)

Proof of Theorem ceqsalt
StepHypRef Expression
1 elisset 2811 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
213ad2ant3 978 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  E. x  x  =  A )
3 bi1 178 . . . . . . 7  |-  ( (
ph 
<->  ps )  ->  ( ph  ->  ps ) )
43imim3i 55 . . . . . 6  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( ( x  =  A  ->  ph )  -> 
( x  =  A  ->  ps ) ) )
54al2imi 1551 . . . . 5  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  ( A. x ( x  =  A  ->  ph )  ->  A. x ( x  =  A  ->  ps )
) )
653ad2ant2 977 . . . 4  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  ->  A. x ( x  =  A  ->  ps )
) )
7 19.23t 1808 . . . . 5  |-  ( F/ x ps  ->  ( A. x ( x  =  A  ->  ps )  <->  ( E. x  x  =  A  ->  ps )
) )
873ad2ant1 976 . . . 4  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ps )  <->  ( E. x  x  =  A  ->  ps )
) )
96, 8sylibd 205 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  -> 
( E. x  x  =  A  ->  ps ) ) )
102, 9mpid 37 . 2  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  ->  ps ) )
11 bi2 189 . . . . . . 7  |-  ( (
ph 
<->  ps )  ->  ( ps  ->  ph ) )
1211imim2i 13 . . . . . 6  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( x  =  A  ->  ( ps  ->  ph ) ) )
1312com23 72 . . . . 5  |-  ( ( x  =  A  -> 
( ph  <->  ps ) )  -> 
( ps  ->  (
x  =  A  ->  ph ) ) )
1413alimi 1549 . . . 4  |-  ( A. x ( x  =  A  ->  ( ph  <->  ps ) )  ->  A. x
( ps  ->  (
x  =  A  ->  ph ) ) )
15143ad2ant2 977 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  A. x
( ps  ->  (
x  =  A  ->  ph ) ) )
16 19.21t 1802 . . . 4  |-  ( F/ x ps  ->  ( A. x ( ps  ->  ( x  =  A  ->  ph ) )  <->  ( ps  ->  A. x ( x  =  A  ->  ph )
) ) )
17163ad2ant1 976 . . 3  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( ps  ->  ( x  =  A  ->  ph ) )  <->  ( ps  ->  A. x ( x  =  A  ->  ph )
) ) )
1815, 17mpbid 201 . 2  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( ps  ->  A. x ( x  =  A  ->  ph )
) )
1910, 18impbid 183 1  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  V )  ->  ( A. x ( x  =  A  ->  ph )  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934   A.wal 1530   E.wex 1531   F/wnf 1534    = wceq 1632    e. wcel 1696
This theorem is referenced by:  ceqsralt  2824
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-11 1727  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-v 2803
  Copyright terms: Public domain W3C validator