MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsexg Unicode version

Theorem ceqsexg 3003
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.)
Hypotheses
Ref Expression
ceqsexg.1  |-  F/ x ps
ceqsexg.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsexg  |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)    V( x)

Proof of Theorem ceqsexg
StepHypRef Expression
1 nfcv 2516 . 2  |-  F/_ x A
2 nfe1 1739 . . 3  |-  F/ x E. x ( x  =  A  /\  ph )
3 ceqsexg.1 . . 3  |-  F/ x ps
42, 3nfbi 1846 . 2  |-  F/ x
( E. x ( x  =  A  /\  ph )  <->  ps )
5 ceqex 3002 . . 3  |-  ( x  =  A  ->  ( ph 
<->  E. x ( x  =  A  /\  ph ) ) )
6 ceqsexg.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
75, 6bibi12d 313 . 2  |-  ( x  =  A  ->  (
( ph  <->  ph )  <->  ( E. x ( x  =  A  /\  ph )  <->  ps ) ) )
8 biid 228 . 2  |-  ( ph  <->  ph )
91, 4, 7, 8vtoclgf 2946 1  |-  ( A  e.  V  ->  ( E. x ( x  =  A  /\  ph )  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547   F/wnf 1550    = wceq 1649    e. wcel 1717
This theorem is referenced by:  ceqsexgv  3004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-v 2894
  Copyright terms: Public domain W3C validator