Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsralv Structured version   Unicode version

Theorem ceqsralv 2985
 Description: Restricted quantifier version of ceqsalv 2984. (Contributed by NM, 21-Jun-2013.)
Hypothesis
Ref Expression
ceqsralv.2
Assertion
Ref Expression
ceqsralv
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ceqsralv
StepHypRef Expression
1 nfv 1630 . 2
2 ceqsralv.2 . . 3
32ax-gen 1556 . 2
4 ceqsralt 2981 . 2
51, 3, 4mp3an12 1270 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178  wal 1550  wnf 1554   wceq 1653   wcel 1726  wral 2707 This theorem is referenced by:  eqreu  3128  sqr2irr  12850  acsfn  13886  ovolgelb  19378 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-11 1762  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-3an 939  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-ral 2712  df-v 2960
 Copyright terms: Public domain W3C validator