MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsrexv Unicode version

Theorem ceqsrexv 3014
Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ceqsrexv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsrexv  |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps )
)
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsrexv
StepHypRef Expression
1 df-rex 2657 . . 3  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  E. x ( x  e.  B  /\  (
x  =  A  /\  ph ) ) )
2 an12 773 . . . 4  |-  ( ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ( x  e.  B  /\  (
x  =  A  /\  ph ) ) )
32exbii 1589 . . 3  |-  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  E. x
( x  e.  B  /\  ( x  =  A  /\  ph ) ) )
41, 3bitr4i 244 . 2  |-  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  E. x ( x  =  A  /\  (
x  e.  B  /\  ph ) ) )
5 eleq1 2449 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
6 ceqsrexv.1 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
75, 6anbi12d 692 . . . 4  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ps )
) )
87ceqsexgv 3013 . . 3  |-  ( A  e.  B  ->  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ( A  e.  B  /\  ps )
) )
98bianabs 851 . 2  |-  ( A  e.  B  ->  ( E. x ( x  =  A  /\  ( x  e.  B  /\  ph ) )  <->  ps )
)
104, 9syl5bb 249 1  |-  ( A  e.  B  ->  ( E. x  e.  B  ( x  =  A  /\  ph )  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   E.wrex 2652
This theorem is referenced by:  ceqsrexbv  3015  ceqsrex2v  3016  reuxfr2d  4688  f1oiso  6012  creur  9928  creui  9929  deg1ldg  19884  ulm2  20170  reuxfr3d  23822  rmxdiophlem  26779  expdiophlem1  26785  expdiophlem2  26786  eqlkr3  29218  diclspsn  31311
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-rex 2657  df-v 2903
  Copyright terms: Public domain W3C validator