Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsrexv Structured version   Unicode version

Theorem ceqsrexv 3061
 Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.)
Hypothesis
Ref Expression
ceqsrexv.1
Assertion
Ref Expression
ceqsrexv
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem ceqsrexv
StepHypRef Expression
1 df-rex 2703 . . 3
2 an12 773 . . . 4
32exbii 1592 . . 3
41, 3bitr4i 244 . 2
5 eleq1 2495 . . . . 5
6 ceqsrexv.1 . . . . 5
75, 6anbi12d 692 . . . 4
87ceqsexgv 3060 . . 3
98bianabs 851 . 2
104, 9syl5bb 249 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wex 1550   wceq 1652   wcel 1725  wrex 2698 This theorem is referenced by:  ceqsrexbv  3062  ceqsrex2v  3063  reuxfr2d  4738  f1oiso  6063  creur  9986  creui  9987  deg1ldg  20007  ulm2  20293  reuxfr3d  23968  rmxdiophlem  27067  expdiophlem1  27073  expdiophlem2  27074  eqlkr3  29826  diclspsn  31919 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-v 2950
 Copyright terms: Public domain W3C validator