MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cf0 Unicode version

Theorem cf0 7893
Description: Value of the cofinality function at 0. Exercise 2 of [TakeutiZaring] p. 102. (Contributed by NM, 16-Apr-2004.)
Assertion
Ref Expression
cf0  |-  ( cf `  (/) )  =  (/)

Proof of Theorem cf0
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfub 7891 . . 3  |-  ( cf `  (/) )  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }
2 0ss 3496 . . . . . . . . . . . . 13  |-  (/)  C_  U. y
32biantru 491 . . . . . . . . . . . 12  |-  ( y 
C_  (/)  <->  ( y  C_  (/) 
/\  (/)  C_  U. y
) )
4 ss0b 3497 . . . . . . . . . . . 12  |-  ( y 
C_  (/)  <->  y  =  (/) )
53, 4bitr3i 242 . . . . . . . . . . 11  |-  ( ( y  C_  (/)  /\  (/)  C_  U. y
)  <->  y  =  (/) )
65anbi2i 675 . . . . . . . . . 10  |-  ( ( x  =  ( card `  y )  /\  (
y  C_  (/)  /\  (/)  C_  U. y
) )  <->  ( x  =  ( card `  y
)  /\  y  =  (/) ) )
7 ancom 437 . . . . . . . . . 10  |-  ( ( x  =  ( card `  y )  /\  y  =  (/) )  <->  ( y  =  (/)  /\  x  =  ( card `  y
) ) )
86, 7bitri 240 . . . . . . . . 9  |-  ( ( x  =  ( card `  y )  /\  (
y  C_  (/)  /\  (/)  C_  U. y
) )  <->  ( y  =  (/)  /\  x  =  ( card `  y
) ) )
98exbii 1572 . . . . . . . 8  |-  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) )  <->  E. y
( y  =  (/)  /\  x  =  ( card `  y ) ) )
10 0ex 4166 . . . . . . . . . 10  |-  (/)  e.  _V
11 fveq2 5541 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( card `  y )  =  (
card `  (/) ) )
1211eqeq2d 2307 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( x  =  ( card `  y
)  <->  x  =  ( card `  (/) ) ) )
1310, 12ceqsexv 2836 . . . . . . . . 9  |-  ( E. y ( y  =  (/)  /\  x  =  (
card `  y )
)  <->  x  =  ( card `  (/) ) )
14 card0 7607 . . . . . . . . . 10  |-  ( card `  (/) )  =  (/)
1514eqeq2i 2306 . . . . . . . . 9  |-  ( x  =  ( card `  (/) )  <->  x  =  (/) )
1613, 15bitri 240 . . . . . . . 8  |-  ( E. y ( y  =  (/)  /\  x  =  (
card `  y )
)  <->  x  =  (/) )
179, 16bitri 240 . . . . . . 7  |-  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) )  <->  x  =  (/) )
1817abbii 2408 . . . . . 6  |-  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  { x  |  x  =  (/) }
19 df-sn 3659 . . . . . 6  |-  { (/) }  =  { x  |  x  =  (/) }
2018, 19eqtr4i 2319 . . . . 5  |-  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  { (/) }
2120inteqi 3882 . . . 4  |-  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  |^| { (/) }
2210intsn 3914 . . . 4  |-  |^| { (/) }  =  (/)
2321, 22eqtri 2316 . . 3  |-  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  (/)  /\  (/)  C_  U. y
) ) }  =  (/)
241, 23sseqtri 3223 . 2  |-  ( cf `  (/) )  C_  (/)
25 ss0b 3497 . 2  |-  ( ( cf `  (/) )  C_  (/)  <->  ( cf `  (/) )  =  (/) )
2624, 25mpbi 199 1  |-  ( cf `  (/) )  =  (/)
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1531    = wceq 1632   {cab 2282    C_ wss 3165   (/)c0 3468   {csn 3653   U.cuni 3843   |^|cint 3878   ` cfv 5271   cardccrd 7584   cfccf 7586
This theorem is referenced by:  cfeq0  7898  cflim2  7905  cfidm  7917  alephsing  7918  alephreg  8220  pwcfsdom  8221  rankcf  8415
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-en 6880  df-card 7588  df-cf 7590
  Copyright terms: Public domain W3C validator