MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilres Structured version   Unicode version

Theorem cfilres 19241
Description: Cauchy filter on a metric subspace. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfilres  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  ( F  e.  (CauFil `  D )  <->  ( Ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )

Proof of Theorem cfilres
Dummy variables  u  s  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 958 . . . . . . . 8  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  F  e.  ( Fil `  X ) )
2 filfbas 17872 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
31, 2syl 16 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  F  e.  ( fBas `  X )
)
4 simp3 959 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  Y  e.  F )
5 fbncp 17863 . . . . . . 7  |-  ( ( F  e.  ( fBas `  X )  /\  Y  e.  F )  ->  -.  ( X  \  Y )  e.  F )
63, 4, 5syl2anc 643 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  -.  ( X  \  Y )  e.  F )
7 filelss 17876 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  Y  C_  X )
873adant1 975 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  Y  C_  X
)
9 trfil3 17912 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  Y  C_  X )  ->  (
( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
101, 8, 9syl2anc 643 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  ( ( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
116, 10mpbird 224 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  ( Ft  Y
)  e.  ( Fil `  Y ) )
1211adantr 452 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  F  e.  (CauFil `  D ) )  ->  ( Ft  Y )  e.  ( Fil `  Y
) )
13 cfili 19213 . . . . . . 7  |-  ( ( F  e.  (CauFil `  D )  /\  x  e.  RR+ )  ->  E. s  e.  F  A. u  e.  s  A. v  e.  s  ( u D v )  < 
x )
1413adantll 695 . . . . . 6  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  F  e.  (CauFil `  D ) )  /\  x  e.  RR+ )  ->  E. s  e.  F  A. u  e.  s  A. v  e.  s 
( u D v )  <  x )
15 simpll2 997 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  F  e.  (CauFil `  D ) )  /\  x  e.  RR+ )  ->  F  e.  ( Fil `  X ) )
16 simpll3 998 . . . . . . . . . 10  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  F  e.  (CauFil `  D ) )  /\  x  e.  RR+ )  ->  Y  e.  F
)
1715, 16jca 519 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  F  e.  (CauFil `  D ) )  /\  x  e.  RR+ )  ->  ( F  e.  ( Fil `  X
)  /\  Y  e.  F ) )
18 elrestr 13648 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F  /\  s  e.  F )  ->  (
s  i^i  Y )  e.  ( Ft  Y ) )
19183expa 1153 . . . . . . . . 9  |-  ( ( ( F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  s  e.  F )  ->  (
s  i^i  Y )  e.  ( Ft  Y ) )
2017, 19sylan 458 . . . . . . . 8  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  F  e.  (CauFil `  D )
)  /\  x  e.  RR+ )  /\  s  e.  F )  ->  (
s  i^i  Y )  e.  ( Ft  Y ) )
21 inss1 3553 . . . . . . . . . 10  |-  ( s  i^i  Y )  C_  s
22 ssralv 3399 . . . . . . . . . . . 12  |-  ( ( s  i^i  Y ) 
C_  s  ->  ( A. v  e.  s 
( u D v )  <  x  ->  A. v  e.  (
s  i^i  Y )
( u D v )  <  x ) )
2322ralimdv 2777 . . . . . . . . . . 11  |-  ( ( s  i^i  Y ) 
C_  s  ->  ( A. u  e.  s  A. v  e.  s 
( u D v )  <  x  ->  A. u  e.  s  A. v  e.  (
s  i^i  Y )
( u D v )  <  x ) )
24 ssralv 3399 . . . . . . . . . . 11  |-  ( ( s  i^i  Y ) 
C_  s  ->  ( A. u  e.  s  A. v  e.  (
s  i^i  Y )
( u D v )  <  x  ->  A. u  e.  (
s  i^i  Y ) A. v  e.  (
s  i^i  Y )
( u D v )  <  x ) )
2523, 24syld 42 . . . . . . . . . 10  |-  ( ( s  i^i  Y ) 
C_  s  ->  ( A. u  e.  s  A. v  e.  s 
( u D v )  <  x  ->  A. u  e.  (
s  i^i  Y ) A. v  e.  (
s  i^i  Y )
( u D v )  <  x ) )
2621, 25ax-mp 8 . . . . . . . . 9  |-  ( A. u  e.  s  A. v  e.  s  (
u D v )  <  x  ->  A. u  e.  ( s  i^i  Y
) A. v  e.  ( s  i^i  Y
) ( u D v )  <  x
)
27 inss2 3554 . . . . . . . . . . . . 13  |-  ( s  i^i  Y )  C_  Y
2827sseli 3336 . . . . . . . . . . . 12  |-  ( u  e.  ( s  i^i 
Y )  ->  u  e.  Y )
2927sseli 3336 . . . . . . . . . . . 12  |-  ( v  e.  ( s  i^i 
Y )  ->  v  e.  Y )
30 ovres 6205 . . . . . . . . . . . . 13  |-  ( ( u  e.  Y  /\  v  e.  Y )  ->  ( u ( D  |`  ( Y  X.  Y
) ) v )  =  ( u D v ) )
3130breq1d 4214 . . . . . . . . . . . 12  |-  ( ( u  e.  Y  /\  v  e.  Y )  ->  ( ( u ( D  |`  ( Y  X.  Y ) ) v )  <  x  <->  ( u D v )  < 
x ) )
3228, 29, 31syl2an 464 . . . . . . . . . . 11  |-  ( ( u  e.  ( s  i^i  Y )  /\  v  e.  ( s  i^i  Y ) )  -> 
( ( u ( D  |`  ( Y  X.  Y ) ) v )  <  x  <->  ( u D v )  < 
x ) )
3332ralbidva 2713 . . . . . . . . . 10  |-  ( u  e.  ( s  i^i 
Y )  ->  ( A. v  e.  (
s  i^i  Y )
( u ( D  |`  ( Y  X.  Y
) ) v )  <  x  <->  A. v  e.  ( s  i^i  Y
) ( u D v )  <  x
) )
3433ralbiia 2729 . . . . . . . . 9  |-  ( A. u  e.  ( s  i^i  Y ) A. v  e.  ( s  i^i  Y
) ( u ( D  |`  ( Y  X.  Y ) ) v )  <  x  <->  A. u  e.  ( s  i^i  Y
) A. v  e.  ( s  i^i  Y
) ( u D v )  <  x
)
3526, 34sylibr 204 . . . . . . . 8  |-  ( A. u  e.  s  A. v  e.  s  (
u D v )  <  x  ->  A. u  e.  ( s  i^i  Y
) A. v  e.  ( s  i^i  Y
) ( u ( D  |`  ( Y  X.  Y ) ) v )  <  x )
36 raleq 2896 . . . . . . . . . . 11  |-  ( y  =  ( s  i^i 
Y )  ->  ( A. v  e.  y 
( u ( D  |`  ( Y  X.  Y
) ) v )  <  x  <->  A. v  e.  ( s  i^i  Y
) ( u ( D  |`  ( Y  X.  Y ) ) v )  <  x ) )
3736raleqbi1dv 2904 . . . . . . . . . 10  |-  ( y  =  ( s  i^i 
Y )  ->  ( A. u  e.  y  A. v  e.  y 
( u ( D  |`  ( Y  X.  Y
) ) v )  <  x  <->  A. u  e.  ( s  i^i  Y
) A. v  e.  ( s  i^i  Y
) ( u ( D  |`  ( Y  X.  Y ) ) v )  <  x ) )
3837rspcev 3044 . . . . . . . . 9  |-  ( ( ( s  i^i  Y
)  e.  ( Ft  Y )  /\  A. u  e.  ( s  i^i  Y
) A. v  e.  ( s  i^i  Y
) ( u ( D  |`  ( Y  X.  Y ) ) v )  <  x )  ->  E. y  e.  ( Ft  Y ) A. u  e.  y  A. v  e.  y  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  x
)
3938ex 424 . . . . . . . 8  |-  ( ( s  i^i  Y )  e.  ( Ft  Y )  ->  ( A. u  e.  ( s  i^i  Y
) A. v  e.  ( s  i^i  Y
) ( u ( D  |`  ( Y  X.  Y ) ) v )  <  x  ->  E. y  e.  ( Ft  Y ) A. u  e.  y  A. v  e.  y  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  x
) )
4020, 35, 39syl2im 36 . . . . . . 7  |-  ( ( ( ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  F  e.  (CauFil `  D )
)  /\  x  e.  RR+ )  /\  s  e.  F )  ->  ( A. u  e.  s  A. v  e.  s 
( u D v )  <  x  ->  E. y  e.  ( Ft  Y ) A. u  e.  y  A. v  e.  y  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  x
) )
4140rexlimdva 2822 . . . . . 6  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  F  e.  (CauFil `  D ) )  /\  x  e.  RR+ )  ->  ( E. s  e.  F  A. u  e.  s  A. v  e.  s  ( u D v )  < 
x  ->  E. y  e.  ( Ft  Y ) A. u  e.  y  A. v  e.  y  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  x
) )
4214, 41mpd 15 . . . . 5  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  F  e.  (CauFil `  D ) )  /\  x  e.  RR+ )  ->  E. y  e.  ( Ft  Y ) A. u  e.  y  A. v  e.  y  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  x
)
4342ralrimiva 2781 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  F  e.  (CauFil `  D ) )  ->  A. x  e.  RR+  E. y  e.  ( Ft  Y ) A. u  e.  y  A. v  e.  y  ( u ( D  |`  ( Y  X.  Y ) ) v )  <  x )
44 simp1 957 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  D  e.  ( * Met `  X
) )
45 xmetres2 18383 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  Y  C_  X
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( * Met `  Y
) )
4644, 8, 45syl2anc 643 . . . . . 6  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( * Met `  Y
) )
4746adantr 452 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  F  e.  (CauFil `  D ) )  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( * Met `  Y
) )
48 iscfil2 19211 . . . . 5  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  Y
)  ->  ( ( Ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) )  <->  ( ( Ft  Y )  e.  ( Fil `  Y )  /\  A. x  e.  RR+  E. y  e.  ( Ft  Y ) A. u  e.  y  A. v  e.  y  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  x
) ) )
4947, 48syl 16 . . . 4  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  F  e.  (CauFil `  D ) )  ->  ( ( Ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) )  <->  ( ( Ft  Y )  e.  ( Fil `  Y )  /\  A. x  e.  RR+  E. y  e.  ( Ft  Y ) A. u  e.  y  A. v  e.  y  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  x
) ) )
5012, 43, 49mpbir2and 889 . . 3  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  F  e.  (CauFil `  D ) )  ->  ( Ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )
5150ex 424 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  ( F  e.  (CauFil `  D )  ->  ( Ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
52 cfilresi 19240 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  ( Ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen ( Ft  Y ) )  e.  (CauFil `  D )
)
5352ex 424 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  (
( Ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) )  ->  ( X filGen ( Ft  Y ) )  e.  (CauFil `  D )
) )
54533ad2ant1 978 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  ( ( Ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) )  ->  ( X filGen ( Ft  Y ) )  e.  (CauFil `  D )
) )
55 fgtr 17914 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  ( X filGen ( Ft  Y ) )  =  F )
56553adant1 975 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  ( X filGen ( Ft  Y ) )  =  F )
5756eleq1d 2501 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  ( ( X filGen ( Ft  Y ) )  e.  (CauFil `  D )  <->  F  e.  (CauFil `  D ) ) )
5854, 57sylibd 206 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  ( ( Ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) )  ->  F  e.  (CauFil `  D ) ) )
5951, 58impbid 184 1  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  ->  ( F  e.  (CauFil `  D )  <->  ( Ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    \ cdif 3309    i^i cin 3311    C_ wss 3312   class class class wbr 4204    X. cxp 4868    |` cres 4872   ` cfv 5446  (class class class)co 6073    < clt 9112   RR+crp 10604   ↾t crest 13640   * Metcxmt 16678   fBascfbas 16681   filGencfg 16682   Filcfil 17869  CauFilccfil 19197
This theorem is referenced by:  cmetss  19259
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-2 10050  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ico 10914  df-rest 13642  df-xmet 16687  df-fbas 16691  df-fg 16692  df-fil 17870  df-cfil 19200
  Copyright terms: Public domain W3C validator