MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilresi Unicode version

Theorem cfilresi 18721
Description: A Cauchy filter on a metric subspace extends to a Cauchy filter in the larger space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
cfilresi  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen F )  e.  (CauFil `  D )
)

Proof of Theorem cfilresi
Dummy variables  u  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetres 17928 . . . 4  |-  ( D  e.  ( * Met `  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  ( X  i^i  Y ) ) )
2 iscfil2 18692 . . . . 5  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  ( X  i^i  Y ) )  ->  ( F  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) )  <->  ( F  e.  ( Fil `  ( X  i^i  Y ) )  /\  A. x  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y 
( u ( D  |`  ( Y  X.  Y
) ) v )  <  x ) ) )
32simplbda 607 . . . 4  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  ( X  i^i  Y
) )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  A. x  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y  (
u ( D  |`  ( Y  X.  Y
) ) v )  <  x )
41, 3sylan 457 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  A. x  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y  ( u ( D  |`  ( Y  X.  Y ) ) v )  <  x )
5 cfilfil 18693 . . . . . . . . . . . . 13  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( * Met `  ( X  i^i  Y
) )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  F  e.  ( Fil `  ( X  i^i  Y ) ) )
61, 5sylan 457 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  F  e.  ( Fil `  ( X  i^i  Y ) ) )
7 filelss 17547 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  ( X  i^i  Y
) )  /\  y  e.  F )  ->  y  C_  ( X  i^i  Y
) )
86, 7sylan 457 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  /\  y  e.  F
)  ->  y  C_  ( X  i^i  Y ) )
9 inss2 3390 . . . . . . . . . . 11  |-  ( X  i^i  Y )  C_  Y
108, 9syl6ss 3191 . . . . . . . . . 10  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  /\  y  e.  F
)  ->  y  C_  Y )
1110sselda 3180 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  /\  y  e.  F
)  /\  u  e.  y )  ->  u  e.  Y )
1210sselda 3180 . . . . . . . . 9  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  /\  y  e.  F
)  /\  v  e.  y )  ->  v  e.  Y )
1311, 12anim12dan 810 . . . . . . . 8  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  /\  y  e.  F
)  /\  ( u  e.  y  /\  v  e.  y ) )  -> 
( u  e.  Y  /\  v  e.  Y
) )
14 ovres 5987 . . . . . . . 8  |-  ( ( u  e.  Y  /\  v  e.  Y )  ->  ( u ( D  |`  ( Y  X.  Y
) ) v )  =  ( u D v ) )
1513, 14syl 15 . . . . . . 7  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  /\  y  e.  F
)  /\  ( u  e.  y  /\  v  e.  y ) )  -> 
( u ( D  |`  ( Y  X.  Y
) ) v )  =  ( u D v ) )
1615breq1d 4033 . . . . . 6  |-  ( ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  /\  y  e.  F
)  /\  ( u  e.  y  /\  v  e.  y ) )  -> 
( ( u ( D  |`  ( Y  X.  Y ) ) v )  <  x  <->  ( u D v )  < 
x ) )
17162ralbidva 2583 . . . . 5  |-  ( ( ( D  e.  ( * Met `  X
)  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  /\  y  e.  F
)  ->  ( A. u  e.  y  A. v  e.  y  (
u ( D  |`  ( Y  X.  Y
) ) v )  <  x  <->  A. u  e.  y  A. v  e.  y  ( u D v )  < 
x ) )
1817rexbidva 2560 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( E. y  e.  F  A. u  e.  y  A. v  e.  y 
( u ( D  |`  ( Y  X.  Y
) ) v )  <  x  <->  E. y  e.  F  A. u  e.  y  A. v  e.  y  ( u D v )  < 
x ) )
1918ralbidv 2563 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( A. x  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y  ( u
( D  |`  ( Y  X.  Y ) ) v )  <  x  <->  A. x  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y  ( u D v )  < 
x ) )
204, 19mpbid 201 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  A. x  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y  ( u D v )  <  x
)
21 filfbas 17543 . . . . 5  |-  ( F  e.  ( Fil `  ( X  i^i  Y ) )  ->  F  e.  (
fBas `  ( X  i^i  Y ) ) )
226, 21syl 15 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  F  e.  ( fBas `  ( X  i^i  Y ) ) )
23 filsspw 17546 . . . . . 6  |-  ( F  e.  ( Fil `  ( X  i^i  Y ) )  ->  F  C_  ~P ( X  i^i  Y ) )
246, 23syl 15 . . . . 5  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  F  C_ 
~P ( X  i^i  Y ) )
25 inss1 3389 . . . . . 6  |-  ( X  i^i  Y )  C_  X
26 sspwb 4223 . . . . . 6  |-  ( ( X  i^i  Y ) 
C_  X  <->  ~P ( X  i^i  Y )  C_  ~P X )
2725, 26mpbi 199 . . . . 5  |-  ~P ( X  i^i  Y )  C_  ~P X
2824, 27syl6ss 3191 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  F  C_ 
~P X )
29 elfvdm 5554 . . . . 5  |-  ( D  e.  ( * Met `  X )  ->  X  e.  dom  * Met )
3029adantr 451 . . . 4  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  X  e.  dom  * Met )
31 fbasweak 17560 . . . 4  |-  ( ( F  e.  ( fBas `  ( X  i^i  Y
) )  /\  F  C_ 
~P X  /\  X  e.  dom  * Met )  ->  F  e.  ( fBas `  X ) )
3222, 28, 30, 31syl3anc 1182 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  F  e.  ( fBas `  X
) )
33 fgcfil 18697 . . 3  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (
fBas `  X )
)  ->  ( ( X filGen F )  e.  (CauFil `  D )  <->  A. x  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y  ( u D v )  < 
x ) )
3432, 33syldan 456 . 2  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( X filGen F )  e.  (CauFil `  D
)  <->  A. x  e.  RR+  E. y  e.  F  A. u  e.  y  A. v  e.  y  (
u D v )  <  x ) )
3520, 34mpbird 223 1  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen F )  e.  (CauFil `  D )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   class class class wbr 4023    X. cxp 4687   dom cdm 4689    |` cres 4691   ` cfv 5255  (class class class)co 5858    < clt 8867   RR+crp 10354   * Metcxmt 16369   fBascfbas 17518   filGencfg 17519   Filcfil 17540  CauFilccfil 18678
This theorem is referenced by:  cfilres  18722  cmetss  18740
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-2 9804  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ico 10662  df-xmet 16373  df-fbas 17520  df-fg 17521  df-fil 17541  df-cfil 18681
  Copyright terms: Public domain W3C validator